Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1287–1297 | Cite as

Influence of Static Low Electromagnetic Field on Copper Corrosion in the Presence of Multispecies Aerobic Bacteria

  • Xiao-Yang Wei
  • Masoumeh MoradiEmail author
  • Li-Jing Yang
  • Zhen-Lun Song
  • Bi-Zhang Zheng
  • Zhan-Peng Lu


The effects of low electromagnetic field (EMF) (B = 2 mT) on the corrosion of pure copper in the absence and presence of multispecies marine aerobic bacteria were investigated in this work. The results showed that EMF has an inhibitory effect on copper metals and decreases the corrosion rate of copper metals in sterile artificial seawater. However, microbiologically influenced corrosion of Cu was increased in the presence of electromagnetic field due to its effect on the biofilm morphology and structure. EMF reduced the growth rate of bacteria and decreased bacterial attachment, thereby forming a heterogeneous and non-stable biofilm on the Cu surface in the presence of EMF. Moreover, the biofilm was dispersed throughout the surface after 7 days, whereas the scattered bacteria were observed on the surface after 10 days. Confocal laser scanning microscopy images showed large and deep pits on the surface in the presence of EMF and confirmed the acceleration of Cu corrosion in the presence of EMF and multispecies bacteria. Furthermore, XPS and FTIR results demonstrated that the corrosion products and metabolic by-products were significantly changed in the presence of EMF.


Electromagnetic field Multispecies aerobic bacteria Corrosion Biofilm 



This work was supported by National Natural Science Foundation of China (No. 5161101078) and Ningbo 135 Marine Economic Innovation and Development Demonstration Project (No. NBHY-2017-Z2).


  1. [1]
    D.T. Peters, Review of Copper–Nickel Alloy Sheathing of Ship Hulls and Offshore Structures. The Application of Copper–Nickel Alloys in Marine Systems. Technical report 7044-1919, Greenwich, CT, Copper Development Association (CDA) (1991)Google Scholar
  2. [2]
    A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, Corros. Sci. 76, 453 (2013)CrossRefGoogle Scholar
  3. [3]
    E. Huttunen-Saarivirta, P. Rajala, M. Bomberg, L. Carpen, Electrochem. Acta 240, 163 (2017)CrossRefGoogle Scholar
  4. [4]
    N.O. San, H. Nazır, G. Donmez, Corros. Sci. 79, 177 (2014)CrossRefGoogle Scholar
  5. [5]
    N.O. San, H. Nazır, G. Donmez, Corros. Sci. 53, 2216 (2011)CrossRefGoogle Scholar
  6. [6]
    S. Chen, D. Zhang, Corros. Sci. 136, 275 (2018)CrossRefGoogle Scholar
  7. [7]
    S. Chen, P. Wang, D. Zhang, Corros. Sci. 87, 407 (2014)CrossRefGoogle Scholar
  8. [8]
    Y.Y. Song, H.W. Shi, J. Wang, F.C. Liu, Corrosion behavior of cupronickel alloy in simulated seawater in the presence of sulfate-reducing bacteria. Acta Metall. Sin. (Engl. Lett.) 30, 1201 (2017)CrossRefGoogle Scholar
  9. [9]
    L. Fojt, L. Strasak, V. Vetterl, Bioelectrochemistry 70, 91 (2007)CrossRefGoogle Scholar
  10. [10]
    A. Obermeier, F.D. Matl, W. Friess, A. Stemberger, Bioelectromagnetics 30, 270 (2009)CrossRefGoogle Scholar
  11. [11]
    G.D. Bonaventura, A. Pompilio, V. Crocetta, S.D. Nicola, F. Barbaro, L. Giuliani, E. D’emilia, E. Fiscarelli, R.G. Bellomo, R. Saggini, Future Microbiol. 9, 1303 (2014)CrossRefGoogle Scholar
  12. [12]
    I. Costa, M.C.L. Oliveira, H.G. de Melo, R.N. Faria, J. Magn. Magn. Mater. 278, 348 (2004)CrossRefGoogle Scholar
  13. [13]
    L.Y. Anga, N.K. Othmana, A. Jalarb, I. Ismail, Proc. Chem. 19, 222 (2016)CrossRefGoogle Scholar
  14. [14]
    Z. Lu, W. Yang, Corros. Sci. 50, 510 (2008)CrossRefGoogle Scholar
  15. [15]
    V.R. Rao, K.V. Bangera, A.C. Hegde, J. Magn. Magn. Mater. 345, 48 (2013)CrossRefGoogle Scholar
  16. [16]
    H.W. Liu, D.K. Xu, B.J. Zheng, A synergistic acceleration of corrosion of Q235 carbon steel between magnetization and extracellular polymeric substances. Acta Metall. Sin. (Engl. Lett.) 31, 456 (2018)CrossRefGoogle Scholar
  17. [17]
    B. Guo, P. Zhang, Y. Jin, S. Cheng, Rare Met. 27, 324 (2008)CrossRefGoogle Scholar
  18. [18]
    T. Karaguler, H. Kahraman, M. Tuter, Biocybern. Biomed. Eng. 37, 336 (2017)CrossRefGoogle Scholar
  19. [19]
    L. Chen, C. Chen, P. Wang, C. Chen, L. Wu, T. Song, J. Magn. Magn. Mater. 115, 117 (2018)Google Scholar
  20. [20]
    L. Fojt, L. Strasak, V. Vetter, J. Smarda, Bioelectrochemistry 63, 337 (2004)CrossRefGoogle Scholar
  21. [21]
    J. Novak, L. Strasak, L. Fojt, I. Slaninova, V. Vetterl, Bioelectrochemistry 70, 115 (2007)CrossRefGoogle Scholar
  22. [22]
    L.O. Mair, A. Nacev, R. Hilaman, P.Y. Stepanov, S. Chowdhury, S. Jafari, J. Hausfeld, A.J. Karlsson, M.F. Shirtliff, B. Shapiro, I.N. Weinberg, J. Magn. Magn. Mater. 427, 81 (2017)CrossRefGoogle Scholar
  23. [23]
    B. Zheng, K. Li, H. Liu, T. Gu, Ind. Eng. Chem. Res. 53, 48 (2014)CrossRefGoogle Scholar
  24. [24]
    M. Moradi, Z. Song, L. Yang, J. Jiang, J. He, Corros. Sci. 84, 103 (2014)CrossRefGoogle Scholar
  25. [25]
    Z. Sun, M. Moradi, Y. Chen, R. Bagheri, P. Guo, L. Yang, Z. Song, C. Xu, Mater. Chem. Phys. 208, 149 (2018)CrossRefGoogle Scholar
  26. [26]
    J. Filipic, B. Kraigher, B. Tepus, V. Kokol, I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012)CrossRefGoogle Scholar
  27. [27]
    X.B. Peng, Q.A. Li, L.N. Ou, L.F. Jiang, K. Zeng, Int. J. Biol. Macromol. 47, 304 (2010)CrossRefGoogle Scholar
  28. [28]
    S. Zhao, F. Cao, H. Zhang, L. Zhang, F. Zhang, X. Liang, Appl. Biochem. Biotechnol. 172, 2732 (2014)CrossRefGoogle Scholar
  29. [29]
    A.V. Tugarova, P.V. Mamchenkova, Y.A. Dyatlova, A.A. Kamnev, Spectrochim. Acta 192, 458 (2018)CrossRefGoogle Scholar
  30. [30]
    E. Lazzari, T. Schena, M. Caetano, A. Marcelo, C.T. Primaz, A.N. Silva, M.F. Ferrao, T. Bjerk, E.B. Caramao, Ind. Crop. Prod. 111, 856 (2018)CrossRefGoogle Scholar
  31. [31]
    B.M. Lee, H.S. Shin, J. Hur, Chemosphere 90, 237 (2013)CrossRefGoogle Scholar
  32. [32]
    X.N. Liao, F.H. Cao, L.Y. Zheng, W.J. Liu, A.N. Chen, J.Q. Zhang, C.A. Cao, Corros. Sci. 53, 3289 (2011)CrossRefGoogle Scholar
  33. [33]
    S. Hong, W. Chen, H.Q. Luo, N.B. Li, Corros. Sci. 57, 270 (2012)CrossRefGoogle Scholar
  34. [34]
    J. Xu, K. Wang, C. Sun, F. Wang, X. Li, J. Yang, C. Yu, Corros. Sci. 53, 1554 (2011)CrossRefGoogle Scholar
  35. [35]
    S. Chongdar, G. Gunasekaran, P. Kumar, Electrochim. Acta 50, 4655 (2005)CrossRefGoogle Scholar
  36. [36]
    D.Q. Zhang, J.K. Goun, Y.K. Lee, Investigation of molybdate-benzotriazole surface treatment against copper tarnishing. Surf. Interface Anal. 41, 164 (2009)CrossRefGoogle Scholar
  37. [37]
    Y.J. Xu, G. Weinberg, X. Liu, Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon. Adv. Funct. Mater. 18, 3613 (2008)CrossRefGoogle Scholar
  38. [38]
    O. Akhavan, R. Azimirad, S. Safa, E. Hasani, J. Mater. Chem. 21, 9634 (2011)CrossRefGoogle Scholar
  39. [39]
    J. Landoulsi, M.J. Genet, S. Fleith, Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination. Appl. Surf. Sci. 383, 71 (2016)CrossRefGoogle Scholar
  40. [40]
    E. Vassallo, A. Cremona, F. Ghezzi, Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD. Appl. Surf. Sci. 252, 7993 (2006)CrossRefGoogle Scholar
  41. [41]
    B.V. Appa Rao, M. Narsihma Reddy, Arab. J. Chem. 10, S3270 (2017)CrossRefGoogle Scholar
  42. [42]
    C.F. Hao, C. Tai-You, L. Szu-Han, C. Yun-Hsien, C. You-Jyun, L.J. Liang, Surf. Interface Anal. 10, 162 (2018)CrossRefGoogle Scholar
  43. [43]
    R.J.J. Jansen, H. van Bekkum, Carbon 33, 1021 (1995)CrossRefGoogle Scholar
  44. [44]
    G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109 (2004)CrossRefGoogle Scholar
  45. [45]
    L. Strasak, V. Vetterl, J. Smarda, Bioelectrochemistry 55, 161 (2002)CrossRefGoogle Scholar
  46. [46]
    A. Harimawan, H. Devianto, I.C. Kurniawan, J.C. Utomo, Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens. AIP Conf. Proc. 1805, 060005 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Yang Wei
    • 1
    • 2
  • Masoumeh Moradi
    • 1
    • 3
    Email author
  • Li-Jing Yang
    • 1
  • Zhen-Lun Song
    • 1
  • Bi-Zhang Zheng
    • 1
  • Zhan-Peng Lu
    • 2
  1. 1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  3. 3.Corrosion and Protection Division, Shenyang National Laboratory for Materials ScienceNortheastern UniversityShenyangChina

Personalised recommendations