Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1537–1548 | Cite as

Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel

  • Tong Xi
  • Lu Yin
  • Chun-Guang YangEmail author
  • Ke YangEmail author


The hot deformation behavior and processing map of Cu-bearing 2205 duplex stainless steel (2205-Cu DSS) were investigated at temperatures of 950–1150 °C and strain rates of 0.01–10 s−1. The effects of Cu addition and different deformation parameters on deformation behavior were, respectively, characterized by analyzing flow curves, constitutive equations and microstructures. The results indicated that the shapes of flow curves strongly depended on the volume fraction of two phases. When deformed at low strain rate, DRV in ferrite was prompted with increase in the temperature and was further developed to continuous DRX. At high strain rate, flow localization preferentially occurred in ferrite at low deformation temperature due to the strain partitioning and relatively less fraction of ferrite. The activation energy for 2205-Cu DSS was 452 kJ/mol and was found to connect with the variation of strain, strain rate and deformation temperature. The optimum hot deformation parameters for 2205-Cu DSS were obtained in the temperature range of 1100–1150 °C and strain rate range of 0.1–1 s−1 with a peak power dissipation efficiency of 41%. Flow localization was the main way to lead to flow instability. Meanwhile, the Cu-rich precipitates were generated within a few ferrite grains when deformed at temperature lower than 1000 °C. The interaction between dislocations and Cu-rich precipitates at high strain rate, as well as the limited DRV in ferrite and DRX in austenite, contributed to the complex microstructure and flow behavior.


Cu-bearing duplex stainless steel Hot deformation Processing map Dynamic recrystallization Dynamic recovery 



This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300205), the National Natural Science Foundation of China (Grant Nos. 51501188 and 51771199), the State Key Program of National Natural Science of China (Grant No. 51631009), Shenzhen-Hong Kong Technology Cooperation Funding Scheme (SGLH20150213143207910), Shenzhen Science and Technology Research Funding (JCYJ20160608153641020).


  1. [1]
    R. Davison, J. Redmond, Mater. Des. 12, 187 (1991)Google Scholar
  2. [2]
    J. Nilsson, Mater. Sci. Technol. 8, 685 (1992)Google Scholar
  3. [3]
    B. Zhang, Z. Jiang, H. Li, S. Zhang, H. Feng, H. Li, Mater. Charact. 129, 31 (2017)Google Scholar
  4. [4]
    H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang, G.W. Fan, Metall. Mater. Trans. B 48, 2493 (2017)Google Scholar
  5. [5]
    T. Xi, C. Yang, M. Babar Shahzad, K. Yang, Mater. Des. 87, 303 (2015)Google Scholar
  6. [6]
    L. Nan, J. Cheng, K. Yang, J. Mater. Sci. Technol. 28, 1067 (2012)Google Scholar
  7. [7]
    L. Nan, Y. Liu, M. Lu, K. Yang, J. Mater. Sci. Mater. Med. 19, 3057 (2008)Google Scholar
  8. [8]
    L. Nan, G. Ren, D. Wang, K. Yang, J. Mater. Sci. Technol. 32, 445 (2016)Google Scholar
  9. [9]
    P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater. Sci. Technol. 33, 723 (2017)Google Scholar
  10. [10]
    J. Zhao, C. Yang, D. Zhang, Y. Zhao, M.S. Khan, D. Xu, T. Xi, X. Li, K. Yang, RSC Adv. 6, 112738 (2016)Google Scholar
  11. [11]
    A. Momeni, K. Dehghani, X. Zhang, J. Mater. Sci. 47, 2966 (2012)Google Scholar
  12. [12]
    A. Dehghan-Manshadi, M. Barnett, P. Hodgson, Mater. Sci. Technol. 23, 1478 (2007)Google Scholar
  13. [13]
    P.P. Bhattacharjee, M. Zaid, G.D. Sathiaraj, B. Bhadak, Metall. Mater. Trans. A 45, 2180 (2014)Google Scholar
  14. [14]
    M.Z. Ahmed, P.P. Bhattacharjee, Steel Res. Int. 87, 472 (2016)Google Scholar
  15. [15]
    P. Richards, T. Sheppard, Mater. Sci. Technol. 2, 836 (1986)Google Scholar
  16. [16]
    A. Momeni, K. Dehghani, H. Keshmiri, G. Ebrahimi, Mater. Sci. Eng. A 527, 1605 (2010)Google Scholar
  17. [17]
    W. Roberts, H. Boden, B. Ahlblom, Met. Sci. 13, 195 (1979)Google Scholar
  18. [18]
    A.S. Taylor, P.D. Hodgson, Mater. Sci. Eng. A 528, 3130 (2011)Google Scholar
  19. [19]
    A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, I. Gutiérrez, Metall. Mater. Trans. A 29, 2975 (1998)Google Scholar
  20. [20]
    O. Balancin, W.A.M. Hoffmann, J.J. Jonas, Metall. Mater. Trans. A 31, 1353 (2000)Google Scholar
  21. [21]
    P. Cizek, J. Whiteman, W. Rainforth, J. Beynon, J. Microsc. 213, 285 (2004)Google Scholar
  22. [22]
    Y. Yang, B. Yan, Mater. Sci. Eng. A 579, 194 (2013)Google Scholar
  23. [23]
    E. Pu, W. Zheng, J. Xiang, Z. Song, J. Li, Mater. Sci. Eng. A 598, 174 (2014)Google Scholar
  24. [24]
    C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt, O.D. Sherby, Metall. Trans. A 13, 447 (1982)Google Scholar
  25. [25]
    R. Raj, Metall. Mater. Trans. A 12, 1089 (1981)Google Scholar
  26. [26]
    Y. Prasad, S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (ASM International, Materials Park, 1997)Google Scholar
  27. [27]
    D. Cai, L. Xiong, W. Liu, G. Sun, M. Yao, Mater. Charact. 58, 941 (2007)Google Scholar
  28. [28]
    A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527, 5467 (2010)Google Scholar
  29. [29]
    A. Momeni, K. Dehghani, Mater. Sci. Eng. A 528, 1448 (2011)Google Scholar
  30. [30]
    H. Li, W. Jiao, H. Feng, X. Li, Z. Jiang, G. Li, L. Wang, G. Fan, P. Han, Metals 6, 223 (2016)Google Scholar
  31. [31]
    A. Marchattiwar, A. Sarkar, J.K. Chakravartty, B.P. Kashyap, J. Mater. Eng. Perform. 22, 2168 (2013)Google Scholar
  32. [32]
    C.M. Sellars, W.J.M. Tegart, Metall. Rev. 17, 1 (1972)Google Scholar
  33. [33]
    Y.V.R.K. Prasad, T. Seshacharyulu, Metall. Rev. 43, 243 (1998)Google Scholar
  34. [34]
    N.D. Ryan, H.J. McQueen, J. Mater. Process. Technol. 21, 177 (1990)Google Scholar
  35. [35]
    L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater. 44, 1665 (1996)Google Scholar
  36. [36]
    H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics (Swiss Federal Institute of Technology, Zürich, 1962)Google Scholar
  37. [37]
    J. Baczynski, J. Jonas, Metall. Mater. Trans. A 29, 447 (1998)Google Scholar
  38. [38]
    A. Belyakov, R. Kaibyshev, R. Zaripova, Mater. Sci. Forum 113, 385 (1993)Google Scholar
  39. [39]
    K. Kato, Y. Saito, T. Sakai, ISIJ Int. 24, 1050 (1984)Google Scholar
  40. [40]
    P. Cizek, B. Wynne, Mater. Sci. Eng. A 230, 88 (1997)Google Scholar
  41. [41]
    S. Lee, J. Kim, S.J. Lee, B.C. De Cooman, Scr. Mater. 65, 1073 (2011)Google Scholar
  42. [42]
    D. Isheim, S. Vaynman, M.E. Fine, D.N. Seidman, Scr. Mater. 59, 1235 (2008)Google Scholar
  43. [43]
    J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, Q. Zhan, Mater. Sci. Eng. A 584, 57 (2013)Google Scholar
  44. [44]
    P. Othen, M. Jenkins, G. Smith, W. Phythian, Philos. Mag. Lett. 64, 383 (1991)Google Scholar
  45. [45]
    Y. Wen, A. Hirata, Z. Zhang, T. Fujita, C.T. Liu, J. Jiang, M. Chen, Acta Mater. 61, 2133 (2013)Google Scholar
  46. [46]
    X. Zhang, Y. Zhang, B. Tian, J. An, Z. Zhao, A.A. Volinsky, Y. Liu, K. Song, Compos. B Eng. 160, 110 (2019)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations