Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1219–1226 | Cite as

Crevice Corrosion Behaviors Between CFRP and Stainless Steel 316L for Automotive Applications

  • Xia-Yu Wu
  • Jia-Kun Sun
  • Jia-Ming Wang
  • Yi-Ming Jiang
  • Jin LiEmail author


Carbon fiber reinforced plastics (CFRP) are promising lightweight materials for vehicle applications. 316L is one of the most widely used types of austenite stainless steels and applied in lots of automotive applications. The existence of crevices will result in galvanic corrosion and crevice corrosion when CFRPs and 316L are directly connected. A crevice former for the galvanic system was therefore designed and applied to evaluate the crevice corrosion behaviors and study the mechanism of galvanic crevice corrosion through several electrochemical techniques in this research. The results showed that the crevice corrosion of galvanic systems grew from crevice mouth to the inside crevice and could be divided into four steps, metastable pitting corrosion at the crevice mouth, initiating step of crevice corrosion, propagating step and ending step of crevice corrosion. Because of the influences of the galvanic system, electrode reaction rates were speeded up and the passivation region was shortened at the initiating stage of crevice corrosion. Corrosion rate was observed to be higher in the galvanic system than that in normal crevice systems.


Crevice corrosion Galvanic system Carbon fiber reinforced plastics 316L stainless steels 



This work was supported by National Key Research and Development Program of China (Grants No. 2018YFB0704400) and National Natural Science Fund of China (Grants Nos. 51671059, 51871061, 51801028). The authors also greatly acknowledge the help provided by Mr. Gang Hu in SEM characterization and would like to thank the helpful collaboration of General Motors Corporation.


  1. [1]
    R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajus, K. Paucar, G. Garces, Corros. Sci. 55, 301 (2012)CrossRefGoogle Scholar
  2. [2]
    L. Arronche, K. Gordon, D. Ryu, V. La Saponara, L. Cheng, J. Mater. Sci. 48, 1315 (2013)CrossRefGoogle Scholar
  3. [3]
    S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, J.C.S. Fernandes, Corros. Sci. 53, 2058 (2011)CrossRefGoogle Scholar
  4. [4]
    F. Bellucci, A. Di Martino, C. Liberti, J. Appl. Electrochem. 16, 15 (1986)CrossRefGoogle Scholar
  5. [5]
    M. Mandel, L. Krüger, Materialwiss Werkst 43, 302 (2012)CrossRefGoogle Scholar
  6. [6]
    G.T. Burstein, S.P. Vines, J. Electrochem. Soc. B 148, 504 (2001)CrossRefGoogle Scholar
  7. [7]
    M. Bryant, R. Farrar, R. Freeman, K. Brummitt, J. Nolan, A. Neville, J. Mech. Behav. Biomed. 40, 275 (2014)CrossRefGoogle Scholar
  8. [8]
    B.P. Cai, Y.H. Liu, C.K. Ren, Z.K. Liu, X.J. Tian, A.B.B. Abulimiti, Corros. Eng., Sci. Technol. 47, 289 (2012)CrossRefGoogle Scholar
  9. [9]
    G.D. Franco, L. Fratini, A. Pasta, Mater. Des. 35, 342 (2012)CrossRefGoogle Scholar
  10. [10]
    D. Han, Y.M. Jiang, C. Shi, B. Deng, J. Li, J. Mater. Sci. 47, 1018 (2012)CrossRefGoogle Scholar
  11. [11]
    J.Y. Jung, S.Y. Park, H.J. Won, S.B. Kim, W.K. Choi, J.K. Moon, S.J. Park, J. Radioanal. Nucl. Ch. 306, 377 (2015)CrossRefGoogle Scholar
  12. [12]
    C. Ren, J. Chen, L. Pu, L. Liu, Y. Pan, J. Hu, T. Shi, Int. J. Electrochem. Soc. 10, 8210 (2015)Google Scholar
  13. [13]
    A.K. Mishra, G.S. Frankel, Corrosion-Houston Tx 64, 397 (2008)Google Scholar
  14. [14]
    S.T. Arab, M.I. Abdulsalam, H.M. Alghamdi, Arab. J. Sci. Eng. 39, 5405 (2014)CrossRefGoogle Scholar
  15. [15]
    J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 13 (1977)CrossRefGoogle Scholar
  16. [16]
    T. Li, L. Liu, B. Zhang, Y. Li, F. Wang, J. Electrochem. Soc. 162, C354 (2015)CrossRefGoogle Scholar
  17. [17]
    S. Marcelin, N. Pébère, S. Régnier, J. Electroanal. Chem. 737, 198 (2015)CrossRefGoogle Scholar
  18. [18]
    A.I. Karayan, J.E. Guerrero, H. Castaneda, J. Alloys Compd. 619, 544 (2015)CrossRefGoogle Scholar
  19. [19]
    J. Wang, S. Qian, Y. Liu, Y. Sun, Y. Jiang, J. Li, Acta Metall. Sin. (Engl. Lett.) 31, 815 (2018)CrossRefGoogle Scholar
  20. [20]
    Y.Z. Yang, Y.M. Jiang, J. Li, Corros. Sci. 76, 163 (2013)CrossRefGoogle Scholar
  21. [21]
    X. Chen, F. Gao, Y. Wang, C. He, Mater. Des. 89, 196 (2016)CrossRefGoogle Scholar
  22. [22]
    J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 104 (1978)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xia-Yu Wu
    • 1
  • Jia-Kun Sun
    • 1
  • Jia-Ming Wang
    • 1
  • Yi-Ming Jiang
    • 1
  • Jin Li
    • 1
    Email author
  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations