Improved Corrosion Resistance of Selective Laser Melted Ti–5Cu Alloy Using Atomized Ti–5Cu Powder

  • Ying Han
  • Hong-Rui Wang
  • Yun-Dong Cao
  • Wen-Tao Hou
  • Shu-Jun LiEmail author


The different types of metal powder used for selective laser melting (SLM) process would cause distinct corrosion behavior due to the uniformity of the obtained microstructure. The SLM-produced Ti–5Cu alloy using atomized Ti–5Cu metal powder (SLMed Ti–5Cu) in this work reveals a relatively uniform microstructure with overwhelming acicular α/α′ phase and shows great advantages on corrosion resistance compared with the SLM-produced Ti–5Cu alloy using the mixture powder (SLMed-M Ti–5Cu). The effect of the micro-galvanic cells decreases due to the undetectable Ti2Cu phase in the microstructure of the SLMed Ti–5Cu. An apparent passivation behavior was observed for SLMed Ti–5Cu instead of severe pitting phenomenon for the SLMed-M Ti–5Cu. The charge transfer resistance of SLMed Ti–5Cu in this work is 10.09 ± 2.63 MΩ cm2, which is significantly higher than that of SLMed-M Ti–5Cu (4.76 MΩ cm2). The above result indicates the atomized Ti–5Cu powder plays an important role in the formation of the uniform microstructure of SLMed product, thereby enhancing its corrosion resistance in Hank’s solution at 37 °C.


Selective laser melting Corrosion behavior Uniform microstructure Ti–5Cu Passivation Polarization resistance 



This work was supported partially by Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-JSC031-02), National Natural Science Foundation of China (No. 51871220), and Department of Education of Liaoning Province project (No. 201734158).


  1. [1]
    Y. Zhang, G.R. Ma, X.C. Zhang, S. Li, S.T. Tu, Corros. Sci. 122, 61 (2017)CrossRefGoogle Scholar
  2. [2]
    L.Q. Wang, L.C. Xie, Y.T. Lv, L.C. Zhang, L.Y. Chen, Q. Meng, J. Qu, D. Zhang, W.J. Lu, Acta Mater. 131, 499 (2017)CrossRefGoogle Scholar
  3. [3]
    L.C. Zhang, J. Xu, E. Ma, J. Mater. Res. 17, 1743 (2002)CrossRefGoogle Scholar
  4. [4]
    M. Calin, L.C. Zhang, J. Eckert, Scr. Mater. 57, 1101 (2007)CrossRefGoogle Scholar
  5. [5]
    L.C. Zhang, Y.J. Liu, S.J. Li, Y.L. Hao, Adv. Eng. Mater. 20, 1700842 (2018)CrossRefGoogle Scholar
  6. [6]
    L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, J. Eckert, J. Alloys Compd. 428, 157 (2007)CrossRefGoogle Scholar
  7. [7]
    Q. Chen, G.A. Thouas, Mater. Sci. Eng. R 87, 1 (2015)CrossRefGoogle Scholar
  8. [8]
    R. Dong, W. Zhu, C. Zhao, Y. Zhang, F. Ren, Metall. Mater. Trans. A 49, 6147 (2018)CrossRefGoogle Scholar
  9. [9]
    C.D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, L.C. Zhang, Mater. Sci. Eng. A 732, 368 (2018)CrossRefGoogle Scholar
  10. [10]
    J. Liu, L. Chang, H. Liu, Y. Li, H. Yang, J. Ruan, Mater. Sci. Eng. C 71, 512 (2017)CrossRefGoogle Scholar
  11. [11]
    S. Agarwal, B. Duffy, J. Curtin, S. Jaiswal, A.C.S. Biomater, Sci. Eng. 4, 3874 (2018)Google Scholar
  12. [12]
    K.N. Campo, E.S.N. Lopes, C.J. Parrish, R. Caram, Acta Mater. 139, 86 (2017)CrossRefGoogle Scholar
  13. [13]
    C.D. Rabadia, Y.J. Liu, L. Wang, H. Sun, L.C. Zhang, Mater. Des. 154, 228 (2018)CrossRefGoogle Scholar
  14. [14]
    J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, S.M. Gaytan, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, J. Mater. Sci. Technol. 29, 1011 (2013)CrossRefGoogle Scholar
  15. [15]
    L.C. Zhang, Z.Q. Shen, J. Xu, Mater. Sci. Eng. A 394, 204 (2005)CrossRefGoogle Scholar
  16. [16]
    L.C. Zhang, J. Xu, J. Eckert, J. Appl. Phys. 100, 033514 (2006)CrossRefGoogle Scholar
  17. [17]
    L.C. Zhang, J. Xu, E. Ma, Mater. Sci. Eng. A 434, 280 (2006)CrossRefGoogle Scholar
  18. [18]
    L.C. Zhang, J. Xu, J. Non-Cryst, Solids 347, 166 (2004)Google Scholar
  19. [19]
    H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, J. Eckert, J. Mater. Res. 29, 1941 (2014)CrossRefGoogle Scholar
  20. [20]
    L.Z. Wang, W.H. Wei, Acta Metall. Sin. (Engl. Lett.) 31, 807 (2018)CrossRefGoogle Scholar
  21. [21]
    Y.L. Guo, L.N. Jia, B. Kong, Y.L. Huang, H. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 477 (2018)CrossRefGoogle Scholar
  22. [22]
    Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater. 113, 56 (2016)CrossRefGoogle Scholar
  23. [23]
    L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016)CrossRefGoogle Scholar
  24. [24]
    Y.Z. Luo, J.M. Zhang, Z.M. Liu, C. Xiao, S.Z. Wu, Acta Metall. Sin. (Engl. Lett.) 24, 326 (2011)Google Scholar
  25. [25]
    L. Zhou, T. Yuan, J. Tang, L. Li, F. Mei, R. Li, Mater. Charact. 145, 185 (2018)CrossRefGoogle Scholar
  26. [26]
    H. Schwab, F. Palm, U. Kühn, J. Eckert, Mater. Des. 105, 75 (2016)CrossRefGoogle Scholar
  27. [27]
    L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, L.C. Zhang, Mater. Des. 79, 1 (2015)CrossRefGoogle Scholar
  28. [28]
    B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, J. Alloys Compd. 541, 177 (2012)CrossRefGoogle Scholar
  29. [29]
    L.X. Xi, H. Zhang, P. Wang, H.C. Li, K.G. Prashanth, K.J. Lin, I. Kaban, D.D. Gu, Ceram. Int. 44, 17635 (2018)CrossRefGoogle Scholar
  30. [30]
    Y. Zhou, N. Li, J. Yan, Q. Zeng, J. Prosthet. Dent. 120, 617 (2018)CrossRefGoogle Scholar
  31. [31]
    R. Huang, Y. Han, Mater. Sci. Eng. C 33, 2353 (2013)CrossRefGoogle Scholar
  32. [32]
    K.S. Suresh, M. Geetha, C. Richard, J. Landoulsi, H. Ramasawmy, S. Suwas, R. Asokamani, Mater. Sci. Eng. C 32, 763 (2012)CrossRefGoogle Scholar
  33. [33]
    S. Mathur, R. Jain, P. Kumar, K. Sachdev, S.K. Sharma, J. Alloys Compd. 538, 160 (2012)CrossRefGoogle Scholar
  34. [34]
    S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi, C. Demangel, Surf. Coat. Technol. 224, 82 (2013)CrossRefGoogle Scholar
  35. [35]
    A. Martín-Cameán, Á. Jos, P. Mellado-García, A. Iglesias-Linares, E. Solano, A.M. Cameán, Environ. Toxicol. Phar. 40, 86 (2015)CrossRefGoogle Scholar
  36. [36]
    Y. Lu, S. Wu, Y. Gan, J. Li, C. Zhao, D. Zhuo, J. Lin, Mater. Sci. Eng. C 49, 517 (2015)CrossRefGoogle Scholar
  37. [37]
    A. Choubey, R. Balasubramaniam, B. Basu, J. Alloys Compd. 381, 288 (2004)CrossRefGoogle Scholar
  38. [38]
    P. Qin, Y.J. Liu, T.B. Sercombe, Y.H. Li, C.W. Zhang, C.D. Cao, H.Q. Sun, L.C. Zhang, A.C.S. Biomater, Sci. Eng. 4, 2633 (2018)Google Scholar
  39. [39]
    Y. Yang, Y. Chen, J.X. Zhang, X.H. Gu, P. Qin, N.W. Dai, X.P. Li, J.P. Kruth, L.C. Zhang, Mater. Des. 136, 239 (2018)CrossRefGoogle Scholar
  40. [40]
    X. Yang, N. Xiang, B. Wei, J. Prosthet. Dent. 112, 1212 (2014)CrossRefGoogle Scholar
  41. [41]
    N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu, Corros. Sci. 102, 484 (2016)CrossRefGoogle Scholar
  42. [42]
    P. Qin, Y. Chen, Y.J. Liu, J.X. Zhang, L.Y. Chen, Y. Li, X.H. Zhang, C.D. Cao, H.Q. Sun, L.C. Zhang, A.C.S. Biomater, Sci. Eng. 5, 1141 (2019)Google Scholar
  43. [43]
    N.W. Dai, J.X. Zhang, Y. Chen, L.C. Zhang, J. Electrochem. Soc. 164, 428 (2017)CrossRefGoogle Scholar
  44. [44]
    N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, C. Yang, Corros. Sci. 111, 703 (2016)CrossRefGoogle Scholar
  45. [45]
    Y. Chen, J.X. Zhang, X.H. Gu, N.W. Dai, P. Qin, L.C. Zhang, J. Alloys Compd. 747, 648 (2018)CrossRefGoogle Scholar
  46. [46]
    D.D. Macdonald, Electrochim. Acta 56, 1761 (2011)CrossRefGoogle Scholar
  47. [47]
    X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145, 80 (2018)CrossRefGoogle Scholar
  48. [48]
    L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scr. Mater. 65, 21 (2011)CrossRefGoogle Scholar
  49. [49]
    Y. Chen, J.X. Zhang, N.W. Dai, P. Qin, H. Attar, L.C. Zhang, Electrochim. Acta 232, 89 (2017)CrossRefGoogle Scholar
  50. [50]
    Y. Bai, S.J. Li, F. Prima, Y.L. Hao, R. Yang, Appl. Surf. Sci. 258, 4035 (2012)CrossRefGoogle Scholar
  51. [51]
    M. Atapour, A. Pilchak, G. Frankel, J. Williams, Mater. Sci. Eng. C 31, 885 (2011)CrossRefGoogle Scholar
  52. [52]
    R.M. Bandeira, J. van Drunen, A.C. Garcia, G. Tremiliosi-Filho, Electrochim. Acta 240, 215 (2017)CrossRefGoogle Scholar
  53. [53]
    Y. Bai, X. Gai, S.J. Li, L.C. Zhang, Y.J. Liu, Y.L. Hao, X. Zhang, R. Yang, Y.B. Gao, Corros. Sci. 123, 289 (2017)CrossRefGoogle Scholar
  54. [54]
    A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121, 394 (2014)CrossRefGoogle Scholar
  55. [55]
    Z. Jia, X.G. Duan, P. Qin, W.C. Zhang, W.M. Wang, C. Yang, H.Q. Sun, S.B. Wang, L.C. Zhang, Adv. Funct. Mater. 27, 1702258 (2017)CrossRefGoogle Scholar
  56. [56]
    S.X. Liang, Z. Jia, Y.J. Liu, W. Zhang, W. Wang, J. Lu, L.C. Zhang, Adv. Mater. 30, 1802764 (2018)CrossRefGoogle Scholar
  57. [57]
    A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, J.C.S. Fernandes, Electrochim. Acta 234, 16 (2017)CrossRefGoogle Scholar
  58. [58]
    Y. Lu, S. Guo, Y. Yang, Y. Liu, Y. Zhou, S. Wu, C. Zhao, J. Lin, J. Alloys Compd. 730, 552 (2018)CrossRefGoogle Scholar
  59. [59]
    T.L.S.L. Wijesinghe, D.J. Blackwood, Corros. Sci. 50, 23 (2008)CrossRefGoogle Scholar
  60. [60]
    A.D. Paola, Electrochim. Acta 34, 203 (1989)CrossRefGoogle Scholar
  61. [61]
    W.P. Gomes, D. Vanmaekelbergh, Electrochim. Acta 41, 967 (1996)CrossRefGoogle Scholar
  62. [62]
    M. Da Cunha Belo, N.E. Hakiki, M.G.S. Ferreira, Electrochim. Acta 44, 2473 (1999)CrossRefGoogle Scholar
  63. [63]
    J. Amri, T. Souier, B. Malki, B. Baroux, Corros. Sci. 50, 431 (2008)CrossRefGoogle Scholar
  64. [64]
    K. Darowicki, S. Krakowiak, P. Ślepski, Electrochim. Acta 51, 2204 (2006)CrossRefGoogle Scholar
  65. [65]
    H.Z. Li, X. Zhao, J. Xu, Mater. Sci. Eng. C 56, 205 (2015)CrossRefGoogle Scholar
  66. [66]
    W. Wang, A. Alfantazi, Electrochim. Acta 131, 79 (2014)CrossRefGoogle Scholar
  67. [67]
    Z.M. Wang, Y.T. Ma, J. Zhang, W.L. Hou, X.C. Chang, J.Q. Wang, Electrochim. Acta 54, 261 (2008)CrossRefGoogle Scholar
  68. [68]
    K. Uosaki, H. Kita, J. Electrochem. Soc. 130, 895 (1983)CrossRefGoogle Scholar
  69. [69]
    N.B. Hakiki, S. Boudin, B. Rondot, M. Da Cunha Belo, Corros. Sci. 37, 1809 (1995)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Han
    • 1
  • Hong-Rui Wang
    • 1
  • Yun-Dong Cao
    • 1
  • Wen-Tao Hou
    • 2
  • Shu-Jun Li
    • 2
    Email author
  1. 1.School of Electrical EngineeringShenyang University of TechnologyShenyangChina
  2. 2.Titanium Alloy Laboratory, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations