Texture Evolution, Formability and Ridging Resistance of a Sn-bearing Ferritic Stainless Steel Under Different Hot Band Annealing Temperatures

  • Yang Bai
  • Tong He
  • Dan Guo
  • Xiu-Ting Liu
  • Fang-Yuan Shao
  • Yan-Dong LiuEmail author


The microstructure, texture evolution and spatial orientation distribution during cold rolling and the subsequent annealing as well as formability and ridging of a Sn-bearing ferritic stainless steel under different hot band annealing temperatures were investigated. The four hot bands with annealing temperatures of 900, 950, 1000 and 1050 °C were all cold-rolled to 80% reductions and then were annealed at the same temperature of 900 °C. The results show that optimizing hot band annealing process is beneficial to reduce the amount of {001} <110> grains and weaken the texture intensity, and thus, to reduce ridging and improve formability. In the present study, the final sheets with hot band annealing temperature of 900 °C possess small and inhomogeneous grains with a large amount of {001} <110> orientations, which deteriorates the formability and increases the ridging. In comparison, the final sheets with hot band annealing temperature of 950 °C are comprised of uniform and equiaxed <111>//ND (ND: normal direction) recrystallized grains with a high texture intensity favorable for the improvement in r value and surface quality. However, when hot band annealing temperature further increases to 1000 and 1050 °C, it shows a sharp decrease in r value and a remarkable increase in ridging as a result of a reduction in γ-fiber texture intensity and an increase in grain size in the final sheets. Suitable controlling and optimizing hot band annealing process is essential to improve the formability and reduce the ridging.


Ferritic stainless steel Texture Formability Ridging 



This work was financially supported by the National Natural Science Foundation of China (No. U1860201) and the Fundamental Research Funds for the Central Universities (No. 162704001).


  1. [1]
    H.X. Li, H. Yu, T. Zhou, B.L. Yin, S.J. Yin, Y.L. Zhang, Mater. Des. 84, 5 (2015)Google Scholar
  2. [2]
    T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, T. Kudo, Corros. Sci. 62, 9 (2012)CrossRefGoogle Scholar
  3. [3]
    X.J. Zhang, F. Gao, Z.Y. Liu, J. Iron Steel Res. Int. 23, 10 (2016)Google Scholar
  4. [4]
    N.D. Nam, J.K. Min, Y.W. Jang, J.G. Kim, Corros. Sci. 52, 1 (2010)CrossRefGoogle Scholar
  5. [5]
    A. Pardo, M.C. Merino, M. Carboneras, F. Viejo, R. Arrabal, J. Munoz, Corros. Sci. 48, 5 (2006)Google Scholar
  6. [6]
    H. Luo, C.F. Dong, K. Xiao, X.G. Li, RSC Adv. 6, 12 (2016)Google Scholar
  7. [7]
    H. Luo, H.Z. Su, B.S. Li, G.B. Ying, Appl. Surf. Sci. 439, 1 (2018)CrossRefGoogle Scholar
  8. [8]
    J.I. Hamada, N. Ono, H. Inoue, ISIJ Int. 51, 10 (2011)CrossRefGoogle Scholar
  9. [9]
    J. Shu, H.Y. Bi, X. Li, Z. Xu, J. Mater. Process. Technol. 212, 1 (2012)CrossRefGoogle Scholar
  10. [10]
    H.T. Yan, H.Y. Bi, X. Li, Z. Xu, Mater. Charact. 60, 1 (2009)CrossRefGoogle Scholar
  11. [11]
    M.Y. Huh, O. Engler, Mater. Sci. Eng. A 308, 1–2 (2001)CrossRefGoogle Scholar
  12. [12]
    X.G. Ma, J.W. Zhao, W. Du, X. Zhang, L.Z. Jiang, Z.Y. Jiang, Mater. Sci. Eng. A 685, 8 (2017)Google Scholar
  13. [13]
    J. Shu, H.Y. Bi, X. Li, Z. Xu, J. Mater. Eng. Perform. 23, 3 (2014)Google Scholar
  14. [14]
    K.M. Lee, M.Y. Huh, S. Park, O. Engler, ISIJ Int. 52, 3 (2012)Google Scholar
  15. [15]
    W. Du, L.Z. Jiang, Q.S. Sun, Z.Y. Liu, X. Zhang, J. Iron Steel Res. Int. 17, 7 (2010)Google Scholar
  16. [16]
    I. Tikhovskiy, D. Raabe, F. Roters, Scr. Mater. 54, 8 (2006)CrossRefGoogle Scholar
  17. [17]
    X. Zhang, L.J. Fan, Y.L. Xu, J. Li, X.S. Xiao, L.Z. Jiang, Mater. Charact. 89, 5 (2016)Google Scholar
  18. [18]
    M. Sánchez-Araiza, S. Godet, P.J. Jacques, J.J. Jonas, Acta Mater. 54, 11 (2006)CrossRefGoogle Scholar
  19. [19]
    K. Verbeken, L. Keatens, J.J. Jonas, Scr. Mater. 48, 10 (2003)CrossRefGoogle Scholar
  20. [20]
    H.T. Liu, Z.Y. Liu, Y.Q. Qiu, G.M. Cao, C.G. Li, G.D. Wang, Mater. Charact. 60, 1 (2009)CrossRefGoogle Scholar
  21. [21]
    O. Engler, Metall. Mater. Trans. A 30, 6 (1999)CrossRefGoogle Scholar
  22. [22]
    Y.Y. Tse, G.L. Liu, B.J. Duggan, Scr. Mater. 42, 1 (1999)CrossRefGoogle Scholar
  23. [23]
    R. Sebald, G. Gottstein, Acta Mater. 50, 6 (2002)CrossRefGoogle Scholar
  24. [24]
    H.T. Yan, H.Y. Bi, X. Li, Z. Xu, J. Mater. Process. Technol. 209, 5 (2009)Google Scholar
  25. [25]
    F. Gao, F.X. Yu, R.D.K. Misra, X.J. Zhang, S.M. Zhang, Z.Y. Liu, J. Mater. Eng. Perform. 24, 10 (2015)CrossRefGoogle Scholar
  26. [26]
    F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 24, 5 (2011)Google Scholar
  27. [27]
    C. Zhang, Z.Y. Liu, G.D. Wang, J. Mater. Process. Technol. 211, 6 (2011)Google Scholar
  28. [28]
    P.D. Wu, H. Jin, Y. Shi, D.J. Lloyd, Mater. Sci. Eng. A 423, 1–2 (2006)CrossRefGoogle Scholar
  29. [29]
    J. Mola, I. Jung, J. Park, D. Chae, B.C. De Cooman, Metall. Mater. Trans. A 43, 1 (2012)CrossRefGoogle Scholar
  30. [30]
    P.D. Wu, D.J. Lloyd, Y. Huang, Mater. Sci. Eng. A 427, 1–2 (2006)CrossRefGoogle Scholar
  31. [31]
    C. Zhang, L.W. Zhang, Z.Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29, 6 (2016)Google Scholar
  32. [32]
    C.S.C. Viana, A.L. Pinto, F.S. Candido, R.G. Matheus, Mater. Sci. Technol. 22, 3 (2006)Google Scholar
  33. [33]
    H.J. Shin, J.K. An, S.H. Park, D.N. Lee, Acta Mater. 51, 16 (2003)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yang Bai
    • 1
  • Tong He
    • 2
  • Dan Guo
    • 1
  • Xiu-Ting Liu
    • 1
  • Fang-Yuan Shao
    • 1
  • Yan-Dong Liu
    • 1
    Email author
  1. 1.Key Laboratory for Anisotropy and Texture of Materials of Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.Research AcademyNortheastern UniversityShenyangChina

Personalised recommendations