Advertisement

Single Crystal Castability and Undercoolability of PWA1483 Superalloy

  • De-Xin Ma
  • Fu WangEmail author
  • Jian-Zheng Guo
  • Wen-Liang Xu
Article
  • 17 Downloads

Abstract

Both of the single crystal (SX) castability and undercoolability of PWA1383 superalloy were investigated during the directional solidification and isothermal cooling. In all the six SX parts of a casting cluster, no stray grains were found, revealing a defect-free SX structure. This excellent SX castability of the superalloy was attributed to its good undercoolability. The melting point (TL) and the critical nucleation temperature (TN) of the alloy were measured to be 1327 °C and 1306 °C, respectively. The statistic average of the critical nucleation undercooling ΔTN = TL − TN of the alloy was determined to be about 21 K, exhibiting a relatively great capacity to be deeply cooled to a temperature below the melting point without the onset of solidification.

Keywords

Superalloys Crystal growth Phase transitions 

Notes

Acknowledgements

This work was financially supported by the Shenzhen Peacock Plan (Grant No. 20150128085205453), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 607264877417), the National Natural Science Foundation of China (Grant No. 51505457), the National Science and Technology Major Project (Grant No. 2017-Vll-0008), the Key Research and Development Program of Shaanxi Province (Grant No. 2018ZDXM-GY-059) and the National Science and Technology Major Project (No. 2017ZX04014001).

References

  1. [1]
    R. Schafrik, Acta Metall. Sin. (Engl. Lett.) 18, 561 (2005)Google Scholar
  2. [2]
    R. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, London, 2006), pp. 130–131CrossRefGoogle Scholar
  3. [3]
    U. Paul, P. Sahm, D. Goldschmidt, Mater. Sci. Eng. A 173, 49 (1993)CrossRefGoogle Scholar
  4. [4]
    W. Xuan, Z. Ren, C. Li, W. Ren, C. Chen, IOP Conf. Series Mater. Sci. Eng. 27, 012035 (2011)CrossRefGoogle Scholar
  5. [5]
    X. Zhang, Y. Zhou, T. Jin, X. Sun, Acta Metall. Sin. 48, 1229 (2012). (in Chinese) CrossRefGoogle Scholar
  6. [6]
    X. Meng, J. Li, S. Zhu, H. Du, Z. Yuan, J. Wang, T. Jin, X. Sun, Z. Hu, Metall. Mater. Trans. A 45, 1230 (2014)CrossRefGoogle Scholar
  7. [7]
    W. Xuan, Z. Ren, C. Li, Metall. Metall. Mater. Trans. A 46, 1461 (2015)CrossRefGoogle Scholar
  8. [8]
    W. Xuan, L. Huan, C. Li, Z. Ren, Y. Zhong, X. Li, G. Cao, Metall. Mater. Trans. B 47, 828 (2016)CrossRefGoogle Scholar
  9. [9]
    M. Meyer ter Vehn, D. Dedecke, U. Paul, P. Sahm, in Proceedings of the Superalloys 1996, ed. by R. Kissingger, D. Deye, D. Anton, A. Cetel, M. Nathal, T. Pollock, D. Woodford (TMS, Warrendale, 1996), p. 471Google Scholar
  10. [10]
    D. Ma, A. Bührig-Polaczek, Metall. Mater. Trans. B 40, 738 (2009)CrossRefGoogle Scholar
  11. [11]
    D. Ma, A. Bührig-Polaczek, Int. J. Cast Met. Res. 22, 422 (2009)CrossRefGoogle Scholar
  12. [12]
    S. Bogner, E. Ivanova, M. Müller, F. Wang, D. Ma, A. Bührig-Polaczek, Metals 5, 1971 (2015)CrossRefGoogle Scholar
  13. [13]
    Y. Li, L. Liu, D. Sun, Q. Yue, T. Huang, B. Gan, J. Zhang, H. Fu, J. Alloys Compd. 773, 432 (2019)CrossRefGoogle Scholar
  14. [14]
    D. Ma, Q. Wu, A. Bührig-Polaczek, Adv. Mater. Res. 278, 417 (2011)CrossRefGoogle Scholar
  15. [15]
    D. Ma, Q. Wu, A. Bührig-Polaczek, IOP Conf. Series Mater. Sci. Eng. 27, 012037 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • De-Xin Ma
    • 1
    • 2
  • Fu Wang
    • 3
    Email author
  • Jian-Zheng Guo
    • 1
    • 2
  • Wen-Liang Xu
    • 3
  1. 1.Wedge Central South Research InstituteShenzhenChina
  2. 2.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaChina
  3. 3.State Key Laboratory for Manufacturing System Engineering, School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations