Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1244–1252 | Cite as

Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission

  • Xu Kong
  • Yu-Min WangEmail author
  • Xu Zhang
  • Qing Yang
  • Guo-Xing Zhang
  • Li-Na Yang
  • Rui YangEmail author


The damage behaviors of a titanium matrix composite shaft under torsion loading were monitored using the acoustic emission technique. The composite shaft with SiC fibers at ± 45° orientations was prepared by the solid-state fabrication process. Both the torsional rigidity and torsional strength of the TMC shaft were improved by SiC fibers. The acoustic emission responses during the loading–unloading–reloading, under quasi-static and cyclic torsion tests were investigated. Multiple acoustic emission signals were grouped as mechanical noise, matrix deformation, interface debonding and fiber fracture using amplitude, waveform shape and frequency centroid parameters. A substantial reduction of signals generated by matrix deformation was found in the reloading test. During the quasi-static torsion test, interface debonding and progressive breaks of SiC fibers occurred. According to different acoustic emission behaviors, the failure process in the torsion fatigue test can be divided into three stages: the initial stage, the fiber fracture stage and the fast fracture stage.


Metal matrix composites (MMCs) Fracture Fatigue Acoustic emission Torsion 



The first author, Xu Kong, gratefully acknowledges the support by Prof. Yundong Sha, College of Aerospace Engineering, Shenyang Aerospace University, who provided the matrix fatigue property data. The authors also thank Mr. Hai Liu, Shenyang Aero-engine Design Institute, for fulfilling the torsion test.


  1. [1]
    J.M. Larsen, S.M. Russ, J.W. Jones, Metall. Mater. Trans. A 26, 3211 (1995)CrossRefGoogle Scholar
  2. [2]
    S. Mall, S.R. Cunningham, Compos. Struct. 80, 65 (2007)CrossRefGoogle Scholar
  3. [3]
    J.A. Hooker, P.J. Doorbar, Mater. Sci. Technol. 16, 725 (2000)CrossRefGoogle Scholar
  4. [4]
    M.R. Winstone, A. Partridge, J.W. Brooks, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 215, 63 (2001)Google Scholar
  5. [5]
    R.S. Salzar, Compos. Sci. Technol. 59, 883 (1999)CrossRefGoogle Scholar
  6. [6]
    G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, New York, 2007), p. 367Google Scholar
  7. [7]
    T.H. Hyde, K. Punyong, A.A. Becker, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 229, 51 (2015)Google Scholar
  8. [8]
    A. Bussiba, M. Kupiec, S. Ifergane, R. Piat, T. Böhlke, Compos. Sci. Technol. 68, 1144 (2008)Google Scholar
  9. [9]
    J.G. Bakuckas, W.H. Prosser, W.S. Johnson, J. Compos. Mater. 28, 305 (1994)CrossRefGoogle Scholar
  10. [10]
    Z.Y. Tan, C.W. Min, H.W. Wu, Y.H. Qian, Li, Acta Metall. Sin. (Engl. Lett.) 30, 992 (2017)CrossRefGoogle Scholar
  11. [11]
    I.M. De Rosa, C. Santulli, F. Sarasini, Compos. Part A Appl. Sci. Manuf. 40, 1456 (2009)CrossRefGoogle Scholar
  12. [12]
    V. Arumugam, S. Barath Kumar, C. Santulli, A. Joseph Stanley, Acta Metall. Sin. (Engl. Lett.) 24, 351 (2011)Google Scholar
  13. [13]
    M. Fotouhi, P. Suwarta, M. Jalalvand, G. Czel, M.R. Wisnom, Compos. Part A Appl. Sci. Manuf. 86, 66 (2016)CrossRefGoogle Scholar
  14. [14]
    H.Y. Chou, A.P. Mouritz, M.K. Bannister, A.R. Bunsell, Compos. Part A Appl. Sci. Manuf. 70, 111 (2015)CrossRefGoogle Scholar
  15. [15]
    C.R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T.H. Gan, P. Purnell, M. Pharaoh, Compos. Sci. Technol. 64, 1819 (2004)CrossRefGoogle Scholar
  16. [16]
    E. Maillet, C. Baker, G.N. Morscher, V.V. Pujar, J.R. Lemanski, Compos. Part A Appl. Sci. Manuf. 75, 77 (2015)CrossRefGoogle Scholar
  17. [17]
    F.E. Oz, N. Ersoy, S.V. Lomov, Compos. Part A Appl. Sci. Manuf. 103, 230 (2017)CrossRefGoogle Scholar
  18. [18]
    G.N. Morscher, Compos. Sci. Technol. 59, 687 (1999)CrossRefGoogle Scholar
  19. [19]
    W. Hao, Z. Yuan, C. Tang, L. Zhang, G. Zhao, Y. Luo, Compos. Struct. 208, 141 (2019)CrossRefGoogle Scholar
  20. [20]
    F. Bernachy-Barbe, L. Gélébart, M. Bornert, J. Crépin, C. Sauder, Compos. Part A Appl. Sci. Manuf. 76, 281 (2015)CrossRefGoogle Scholar
  21. [21]
    K. Ono, in Springer Handbook of Acoustics, ed. by T.D. Rossing (Springer, New York, 2014), p. 1209Google Scholar
  22. [22]
    J. Bohlen, F. Chmelík, P. Dobroň, F. Kaiser, D. Letzig, P. Lukáč, K.U. Kainer, J. Alloys Compd. 378, 207 (2004)CrossRefGoogle Scholar
  23. [23]
    D. Drozdenko, J. Bohlen, F. Chmelík, P. Lukáč, P. Dobroň, Mater. Sci. Eng. A 650, 20 (2016)CrossRefGoogle Scholar
  24. [24]
    H. Tanaka, R. Horiuchi, Scr. Metall. 9, 777 (1975)CrossRefGoogle Scholar
  25. [25]
    Y.M. Wang, G.X. Zhang, X. Zhang, Q. Yang, L.N. Yang, R. Yang, Acta Metall. Sin. 52, 1153 (2016) (in Chinese)Google Scholar
  26. [26]
    C.B. Zhao, Y.M. Wang, G.X. Zhang, Q. Yang, X. Zhang, L.N. Yang, R. Yang, J. Mater. Sci. Technol. 33, 1378 (2017)CrossRefGoogle Scholar
  27. [27]
    R. Leucht, H.J. Dudek, Mater. Sci. Eng. A 188, 201 (1994)CrossRefGoogle Scholar
  28. [28]
    P. Potluri, A. Manan, M. Francke, R.J. Day, Compos. Struct. 75, 377 (2006)CrossRefGoogle Scholar
  29. [29]
    S.G. Warrier, B.S. Majumdar, D.B. Miracle, Acta Mater. 45, 309 (1997)CrossRefGoogle Scholar
  30. [30]
    N. Carrere, E. Martin, B. Coutand, Compos. Part A Appl. Sci. Manuf. 34, 1065 (2003)CrossRefGoogle Scholar
  31. [31]
    G. Rousset, E. Martin, J. Lamon, Compos. Sci. Technol. 69, 2580 (2009)CrossRefGoogle Scholar
  32. [32]
    K. Takashima, K.M. Fox, C. Barney, J.G. Pursell, P. Bowen, Mater. Sci. Technol. 12, 917 (1996)CrossRefGoogle Scholar
  33. [33]
    M. Friesel, S.H. Carpenter, Metall. Trans. A 15, 1849 (1984)CrossRefGoogle Scholar
  34. [34]
    K. Máthis, F. Chmelík, in Acoustic Emission, ed. by W. Sikorski (InTech, Rijeka, 2012)Google Scholar
  35. [35]
    P.J. Withers, A.P. Clarke, Acta Mater. 46, 6585 (1998)CrossRefGoogle Scholar
  36. [36]
    P.W.M. Peters, J. Hemptenmacher, K. Weber, H. Assler, J. Compos. Technol. Res. 24, 246 (2002)CrossRefGoogle Scholar
  37. [37]
    M.P. Thomas, M.R. Winstone, Compos. Sci. Technol. 59, 297 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations