Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1181–1194 | Cite as

Surface and Subsurface Defects Studies of Dental Alloys Exposed to Sandblasting

  • Krzysztof SiemekEmail author
  • Mirosław Kulik
  • Marat Eseev
  • Mirosław Wróbel
  • Andrey Kobets
  • Oleg Orlov
  • Alexey Sidorin
Article
  • 56 Downloads

Abstract

The defects created in commercial dental alloys during blasting with alumina particles propelled in compressed air under pressure 0.1 and 0.4 MPa have been studied using positron annihilation spectroscopy, scanning electron microscopy and X-ray diffraction. It was observed that higher pressure causes the increase in roughness and damaged zone range. The type of defects was determined as vacancies on dislocations. The defect concentration decreases with the depth and depends on alloys’ type and applied pressure. The Rutherford backscattering spectroscopy and variable energy positron beam studies indicate shallow alumina deposition in material and show that small pressure of 0.1 MPa is not enough to remove metal surface oxides completely in 60 s in all studied dental alloys.

Keywords

Sandblasting Positron annihilation technique Dental alloys Defects analysis Oxides 

References

  1. [1]
    H. Hubálková, T. Dostálová, J. Charvát, M. Bartoňová, Prague Med. Rep. 105, 13 (2004)Google Scholar
  2. [2]
    M. Gargari, F.M. Ceruso, A. Pujia, V. Prete, J. Oral Implantol. 6, 99 (2013)Google Scholar
  3. [3]
    N. Su, L. Yue, Y. Liao, W. Liu, H. Zhang, X. Li, H. Wang, J. Shen, J. Adv. Prosthodont. 7, 214–223 (2015)CrossRefGoogle Scholar
  4. [4]
    H. Bruno, S. Filipe, S. Delfim, Mater. Sci. Forum 730–732, 9 (2012)Google Scholar
  5. [5]
    Y.S. Al Jabbari, S. Zinelis, G. Eliades, Dent. Mater. J. 31, 249 (2012)CrossRefGoogle Scholar
  6. [6]
    A. Fujishima, T. Miyazaki, Y. Fujishima, A. Shiba, J. Jpn. Soc. Dent. Mater. Dev. 16, 227 (1997)Google Scholar
  7. [7]
    M. Inokoshi, F. Zhang, K. Vanmeensel, J. De Munck, S. Minakuchi, I. Naert, J. Vleugels, B. Van Meerbeek, Dent. Mater. 33, e147 (2017)CrossRefGoogle Scholar
  8. [8]
    T. Derand, H. Hero, Scand. J. Dent. Res. 100, 184 (1992)Google Scholar
  9. [9]
    M.J. Reyes, Y. Oshida, C.J. Andres, T. Barco, S. Hovijitra, D. Brown, Biomed. Mater. Eng. 11, 117 (2001)Google Scholar
  10. [10]
    Z. Cai, N. Bunce, M.E. Nunn, T. Okabe, Biomaterials 22, 979 (2001)CrossRefGoogle Scholar
  11. [11]
    P. Horodek, K. Siemek, J. Dryzek, A.G. Kobets, M. Wróbel, Tribol. Lett. 65, 30 (2017)CrossRefGoogle Scholar
  12. [12]
    G. Carter, J. Bevan, I.V. Katardjiev, M.J. Nobes, Mat. Sci. Eng. A 132, 231 (1991)CrossRefGoogle Scholar
  13. [13]
    K. Kvam, H. Herø, Biomaterials 22, 1379 (2001)CrossRefGoogle Scholar
  14. [14]
    E. Dryzek, J. Mater. Sci. 38, 3755 (2003)CrossRefGoogle Scholar
  15. [15]
    S. Zinelis, A. Tsetsekou, T. Papadopoulos, J. Prosthet. Dent. 90, 332 (2003)CrossRefGoogle Scholar
  16. [16]
    X. Zhu, X. Gao, H. Song, G. Han, D.Y. Lin, Mater. Des. 119, 30 (2017)CrossRefGoogle Scholar
  17. [17]
    P. Hautojärvi. Positron annihilation spectroscopy of defects in solid. Symposium I: Characterization of Defects in Materials. MRS Proceedings, vol. 82 (1986), p. 3Google Scholar
  18. [18]
    J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996)CrossRefGoogle Scholar
  19. [19]
    P. Horodek, K. Siemek, J. Dryzek, M. Wróbel, Materials 10, 1343 (2017)CrossRefGoogle Scholar
  20. [20]
    F. Börner, S. Eichler, A. Polity, R. Krause-Rehberg, J. Appl. Phys. 84, 2225 (1998)CrossRefGoogle Scholar
  21. [21]
    J. Dryzek, K. Siemek, J. Appl. Phys. 114, 074904 (2013)CrossRefGoogle Scholar
  22. [22]
    P. Horodek, A.G. Kobets, I.N. Meshkov, A.A. Sidorin, O.S. Orlov, Nukleonika 60, 725 (2015)CrossRefGoogle Scholar
  23. [23]
    L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986)Google Scholar
  24. [24]
    W.-K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978)CrossRefGoogle Scholar
  25. [25]
    J.R. Cameron, Phys. Rev. 90, 839 (1953)CrossRefGoogle Scholar
  26. [26]
    J.M. Campillo Robles, E. Ogando, F. Plazaola, J. Phys. Condens. Matter. 19, 176222 (2007)CrossRefGoogle Scholar
  27. [27]
    Y. Kamimura, T. Tsutsumi, E. Kuramoto, Phys. Rev. B 52, 879 (1995)CrossRefGoogle Scholar
  28. [28]
    T.E.M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback, J. Phys. Condens. Matter 11, 1757 (1999)CrossRefGoogle Scholar
  29. [29]
    S. Abhaya, R. Rajaraman, S. Kalavathi, G. Amarendra, J. Alloys Compd. 620, 277 (2015)CrossRefGoogle Scholar
  30. [30]
    M. Forster, W. Claudy, H. Hermes, J. Major, H.E. Schaefer, M. Koch, K. Maier, H. Stoll, Mater. Sci. Forum 105–110, 1005 (1992).  https://doi.org/10.4028/www.scientific.net/MSF.105-110.1005 CrossRefGoogle Scholar
  31. [31]
    M. Noguchi, T. Mitsuhashi, T. Chiba, T. Tanaka, N. Tsuda, J. Phys. Soc. Jpn. 32, 1242 (1972)CrossRefGoogle Scholar
  32. [32]
    J. Dryzek, P. Horodek, Nucl. Instrum. Methods Phys. Res. B 266, 4000 (2008)CrossRefGoogle Scholar
  33. [33]
    A. Van Veen, H. Schut, M. Clement, A. Kruseman, M.R. Ijpma, J.M.M. De Nijs, Appl. Surf. Sci. 85, 216 (1995)CrossRefGoogle Scholar
  34. [34]
    P. Horodek, K. Siemek, A.G. Kobets, M. Kulik, I. Meshkov, Appl. Surf. Sci. 333, 96 (2014)CrossRefGoogle Scholar
  35. [35]
    K. Nomura, Y. Ujihira, J. Mater. Sci. 25, 1745 (1990)CrossRefGoogle Scholar
  36. [36]
    I.C. Langevoort, I. Sutherland, L.J. Hanekamp, P.J. Gellings, Appl. Surf. Sci. 28, 167 (1987)CrossRefGoogle Scholar
  37. [37]
    C.R. Luna, C. Macchi, A. Juan, A. Somoza, J. Phys. Conf. Ser. 443, 012019 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow RegionRussian Federation
  2. 2.Institute of Nuclear Physics, PASKrakówPoland
  3. 3.Institute of PhysicsMaria Curie-Skłodowska UniversityLublinPoland
  4. 4.Northern Arctic Federal UniversityArkhangelskRussian Federation
  5. 5.AGH University of Science and TechnologyKrakówPoland
  6. 6.Institute of Electrophysics and Radiation TechnologiesNAS of UkraineKharkivUkraine

Personalised recommendations