Advertisement

Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations

  • Yong Zhang
  • Zi-Ran Liu
  • Ding-Wang Yuan
  • Qin Shao
  • Jiang-Hua ChenEmail author
  • Cui-Lan Wu
  • Zao-Li Zhang
Article
  • 8 Downloads

Abstract

Owing to the excellent elastic properties and chemical stability, binary metal or light element borides, carbides and nitrides have been extensively applied as hard and low-compressible materials. Researchers are searching for harder materials all the time. Recently, the successful fabrication of nano-twinned cubic BN (Tian et al. Nature 493:385–388, 2013) and diamond (Huang et al. Nature 510:250–253, 2014) exhibiting superior properties than their twin-free counterparts allows an efficient way to be harder. From this point of view, the borides, carbides and nitrides may be stronger by introducing twins, whose formation tendency can be measured using stacking fault energies (SFEs). The lower the SFEs, the easier the formation of twins. In the present study, by means of first-principles calculations, we first calculated the fundamental elastic constants of forty-two borides, seventeen carbides and thirty-one nitrides, and their moduli, elastic anisotropy factors and bonding characters were accordingly derived. Then, the SFEs of the {111} < 112 > glide system of twenty-seven compounds with the space group F\(\bar{4}\)3m or Fm\(\bar{3}\)m were calculated. Based on the obtained elastic properties and SFEs, we find that (1) light element compounds usually exhibit superior elastic properties over the metal borides, carbides or nitrides; (2) the 5d transition-metal compounds (ReB2, WB, OsC, RuC, WC, OsN2, TaN and WN) possess comparable bulk modulus (B) with that of cBN (B = 363 GPa); (3) twins may form in ZrB, HfN, PtN, VN and ZrN, since their SFEs are lower or slightly higher than that of diamond (SFE = 277 mJ/m2). Our work can be used as a valuable database to compare these compounds.

Keywords

Inorganic compounds Elastic properties Stacking fault energies First-principles calculations 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11427806, 51471067, 51671082, 51671086 and 51302313) and the National Key Research and Development Program of China (No. 2016YFB0300801). We are highly grateful for the kind help from Zhixiao Liu at Hunan University, Changsha, with the written English.

References

  1. [1]
    H.O. Pierson, Handbook of Refractory Carbides and Nitrides (Noyes Publications, Westwood, 1996)Google Scholar
  2. [2]
    R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005)CrossRefGoogle Scholar
  3. [3]
    A.L. Ivanovskii, Prog. Mater. Sci. 57, 184 (2012)CrossRefGoogle Scholar
  4. [4]
    R. Telle, L.S. Sigl, K. Takagi, Boride-based hard materials, in Handbook of Ceramic Hard Materials (Wiley-VCH Verlag GmbH, Weinheim, 2008), pp. 802–945Google Scholar
  5. [5]
    P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51, 1032 (2006)CrossRefGoogle Scholar
  6. [6]
    G.F. Huang, L.P. Zhou, W.Q. Huang, L.H. Zhao, S.L. Li, D.Y. Li, Diam. Relat. Mater. 12, 1406 (2003)CrossRefGoogle Scholar
  7. [7]
    J. Xiang, Z. Xie, Y. Huang, H. Xiao, J. Eur. Ceram. Soc. 20, 933 (2000)CrossRefGoogle Scholar
  8. [8]
    K.B. Panda, K.S. Ravi Chandran, Metall. Mater. Trans. A 34, 1371 (2003)CrossRefGoogle Scholar
  9. [9]
    Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, L.L. Snead, J. Nucl. Mater. 448, 448 (2014)CrossRefGoogle Scholar
  10. [10]
    A. Iveković, S. Novak, G. Dražić, D. Blagoeva, S.G. de Vicente, J. Eur. Ceram. Soc. 33, 1577 (2013)CrossRefGoogle Scholar
  11. [11]
    J. Hu, H. Xiao, W. Guo, Q. Li, W. Xie, B. Zhu, Ceram. Int. 40, 1065 (2014)CrossRefGoogle Scholar
  12. [12]
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)CrossRefGoogle Scholar
  13. [13]
    H. Dong, H.X. Yang, X.P. Ai, C. Cha, Int. J. Hydrog. Energy 28, 1095 (2003)CrossRefGoogle Scholar
  14. [14]
    A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuesz, P. Kroll, R. Boehler, Nature 400, 340 (1999)CrossRefGoogle Scholar
  15. [15]
    E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.J. Hemley, Nat. Mater. 3, 294 (2004)CrossRefGoogle Scholar
  16. [16]
    J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311, 1275 (2006)CrossRefGoogle Scholar
  17. [17]
    R.S. Igor, L.I. Alexander, J. Phys. Condens. Matter 20, 415218 (2008)CrossRefGoogle Scholar
  18. [18]
    Z.S. Zhao, L.F. Xu, L.M. Wang, B. Xu, M. Wang, Z.Y. Liu, J.L. He, Comput. Mater. Sci. 50, 1592 (2011)CrossRefGoogle Scholar
  19. [19]
    Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, J.H. He, Comput. Mater. Sci. 51, 112 (2012)CrossRefGoogle Scholar
  20. [20]
    X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng, Phys. Rev. B 74, 224112 (2006)CrossRefGoogle Scholar
  21. [21]
    V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Philos. Mag. A 82, 231 (2002)CrossRefGoogle Scholar
  22. [22]
    Y.J. Tian, B. Xu, D.L. Yu, Y.M. Ma, Y.B. Wang, Y.B. Jiang, W.T. Hu, C.C. Tang, Y.F. Gao, K. Luo, Z.S. Zhao, L.M. Wang, B. Wen, J.L. He, Z.Y. Liu, Nature 493, 385 (2013)CrossRefGoogle Scholar
  23. [23]
    Q. Huang, D.L. Yu, B. Xu, W.T. Hu, Y.M. Ma, Y.B. Wang, Z.S. Zhao, B. Wen, J.L. He, Z.Y. Liu, Y.J. Tian, Nature 510, 250 (2014)CrossRefGoogle Scholar
  24. [24]
    Z.J. Lin, L. Wang, J.Z. Zhang, X.Y. Guo, W. Yang, H.K. Mao, Y.S. Zhao, Scr. Mater. 63, 981 (2010)CrossRefGoogle Scholar
  25. [25]
    T.F. Li, T.M. Liu, L.Q. Zhang, T. Fu, H.M. Wei, Comput. Mater. Sci. 126, 103 (2017)CrossRefGoogle Scholar
  26. [26]
    B. Yang, X. Peng, H. Xiang, D. Yin, C. Huang, S. Sun, T. Fu, J. Alloys Compd. 739, 431 (2018)CrossRefGoogle Scholar
  27. [27]
    E.O. Hall, Proc. Phys. Soc. Lond. Sect. B 64, 747 (1951)CrossRefGoogle Scholar
  28. [28]
    N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)Google Scholar
  29. [29]
    Y. Zhang, N.R. Tao, K. Lu, Scr. Mater. 60, 211 (2009)CrossRefGoogle Scholar
  30. [30]
    X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 64, 954 (2011)CrossRefGoogle Scholar
  31. [31]
    D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68, 238 (2014)CrossRefGoogle Scholar
  32. [32]
    S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Acta Mater. 55, 6843 (2007)CrossRefGoogle Scholar
  33. [33]
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)CrossRefGoogle Scholar
  34. [34]
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  35. [35]
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  36. [36]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  37. [37]
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefGoogle Scholar
  38. [38]
    L. Zhou, F. Körmann, D. Holec, M. Bartosik, B. Grabowski, J. Neugebauer, P.H. Mayrhofer, Phys. Rev. B 90, 184102 (2014)CrossRefGoogle Scholar
  39. [39]
    R. Yu, J. Zhu, H.Q. Ye, Comput. Phys. Commun. 181, 671 (2010)CrossRefGoogle Scholar
  40. [40]
    R. Hill, Proc. Phys. Soc. Lond. Sect. A 65, 349 (1952)CrossRefGoogle Scholar
  41. [41]
    K. Lau, A.K. McCurdy, Phys. Rev. B 58, 8980 (1998)CrossRefGoogle Scholar
  42. [42]
    Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)CrossRefGoogle Scholar
  43. [43]
    L.H. Liu, J.H. Chen, T.W. Fan, Z.R. Liu, Y. Zhang, D.W. Yuan, Comput. Mater. Sci. 108, 136 (2015)CrossRefGoogle Scholar
  44. [44]
    Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen, J. Alloys Compd. 726, 601 (2017)CrossRefGoogle Scholar
  45. [45]
    Z.G. Wu, X.J. Chen, V.V. Struzhkin, R.E. Cohen, Phys. Rev. B 71, 214103 (2005)CrossRefGoogle Scholar
  46. [46]
    M.G. Brik, C.G. Ma, Comput. Mater. Sci. 51, 380 (2012)CrossRefGoogle Scholar
  47. [47]
    G.V. Sin’ko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002)CrossRefGoogle Scholar
  48. [48]
    K.B. Panda, K.S.R. Chandran, Acta Mater. 54, 1641 (2006)CrossRefGoogle Scholar
  49. [49]
    S.K.R. Patil, S.V. Khare, B.R. Tuttle, J.K. Bording, S. Kodambaka, Phys. Rev. B 73, 104118 (2006)CrossRefGoogle Scholar
  50. [50]
    T. Oguchi, J. Phys. Soc. Jpn. 71, 1495 (2002)CrossRefGoogle Scholar
  51. [51]
    J.Q. Qin, D.W. He, J.H. Wang, L.M. Fang, L. Lei, Y.J. Li, J. Hu, Z.L. Kou, Y. Bi, Adv. Mater. 20, 4780 (2008)CrossRefGoogle Scholar
  52. [52]
    Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Y. Yang, S.Q. Ma, D.W. Yi, J. Alloys Compd. 509, 5242 (2011)CrossRefGoogle Scholar
  53. [53]
    C. Jiang, Appl. Phys. Lett. 92, 041909 (2008)CrossRefGoogle Scholar
  54. [54]
    X.G. Lu, M. Selleby, B. Sundman, Acta Mater. 55, 1215 (2007)CrossRefGoogle Scholar
  55. [55]
    Y. Liang, J. Zhao, B. Zhang, Solid State Commun. 146, 450 (2008)CrossRefGoogle Scholar
  56. [56]
    W. Chen, J.S. Tse, J.Z. Jiang, Solid State Commun. 150, 181 (2010)CrossRefGoogle Scholar
  57. [57]
    A. Cazzani, M. Rovati, Int. J. Solids Struct. 40, 1713 (2003)CrossRefGoogle Scholar
  58. [58]
    S.F. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  59. [59]
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  60. [60]
    Y. Zhang, D.W. Yuan, J.H. Chen, G. Zeng, T.W. Fan, Z.R. Liu, C.L. Wu, L.H. Liu, J. Electron. Mater. 45, 4018 (2016)CrossRefGoogle Scholar
  61. [61]
    F. Zhao, L. Wang, D. Fan, B.X. Bie, X.M. Zhou, T. Suo, Y.L. Li, M.W. Chen, C.L. Liu, M.L. Qi, M.H. Zhu, S.N. Luo, Phys. Rev. Lett. 116, 075501 (2016)CrossRefGoogle Scholar
  62. [62]
    P. Käckell, J. Furthmüller, F. Bechstedt, Phys. Rev. B 58, 1326 (1998)CrossRefGoogle Scholar
  63. [63]
    P. Pirouz, D.J.H. Cockayne, N. Sumida, P. Hirsch, A.R. Lang, Proc. R. Soc. Lond. Ser. A 386, 241 (1983)CrossRefGoogle Scholar
  64. [64]
    L. Nistor, S. Nistor, G. Dinca, J. Van Landuyt, D. Schoemaker, V. Copaciu, P. Georgeoni, N. Arnici, Diam. Relat. Mater. 8, 738 (1999)CrossRefGoogle Scholar
  65. [65]
    U. Lindefelt, H. Iwata, S. Öberg, P.R. Briddon, Phys. Rev. B 67, 155204 (2003)CrossRefGoogle Scholar
  66. [66]
    S.K. Yadav, X.Y. Liu, J. Wang, R. Ramprasad, A. Misra, R.G. Hoagland, Philos. Mag. 94, 464 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yong Zhang
    • 1
  • Zi-Ran Liu
    • 2
  • Ding-Wang Yuan
    • 1
  • Qin Shao
    • 1
  • Jiang-Hua Chen
    • 1
    Email author
  • Cui-Lan Wu
    • 1
  • Zao-Li Zhang
    • 3
  1. 1.Center for High-Resolution Electron Microscopy, College of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.Department of Physics, Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education)Hunan Normal UniversityChangshaChina
  3. 3.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria

Personalised recommendations