Advertisement

Effect of Temperature on Grain Size in AA6063 Aluminum Alloy Subjected to Repetitive Corrugation and Straightening

  • N. Thangapandian
  • S. Balasivanandha Prabu
  • K. A. Padmanabhan
Article
  • 27 Downloads

Abstract

The influence of processing temperature on grain size reduction in AA 6063 aluminum alloy subjected to repetitive corrugation and straightening (RCS) is investigated in this work. The aluminum alloy was processed by RCS at different temperatures (room temperature, 100 °C, 200 °C and 300 °C) till the maximum number of passes possible before failure and the mechanical properties such as tensile strength and hardness were measured. The grain size and their misorientation of grains of the processed samples were analyzed using the electron backscattered diffraction. The results indicated that the transformation of low-angle grain boundaries to high-angle grain boundaries and dislocation tangles were highly dependent on the strain imparted, which could be controlled by selecting the proper processing temperature. As a result, the mechanical properties are affected. In particular, the room temperature tensile strength and hardness values of the processed material decrease with increasing processing temperature.

Keywords

Repetitive corrugation and straightening Strain Grain size reduction/refinement EBSD Strength Hardness 

Notes

Acknowledgements

This work was supported financially by the Department of Science and Technology, Government of India (No. SB/FTP/ETA-104/2012). The authors gratefully acknowledge the help of Prof. V. Subramanya Sarma, IITM, Chennai, for the EBSD measurements.

References

  1. [1]
    Y.X. Tong, Y. Wang, Z.M. Qian, D.T. Zhang, L. Li, Y.F. Zheng, Acta Metall. Sin. (Engl Lett.) 31, 1084 (2018)CrossRefGoogle Scholar
  2. [2]
    G. Ji, X.H. Yang, N. Song, S. Min, Rare Met. Mater. Eng. 47, 1347 (2018)CrossRefGoogle Scholar
  3. [3]
    M.R. Morovvati, B.M. Dariani, J. Manuf. Process. 30, 241 (2017)CrossRefGoogle Scholar
  4. [4]
    S.V. Noora, A.R. Eivania, H.R. Jafariana, M. Mirzaeib, Mater. Sci. Eng., A 652, 186 (2016)CrossRefGoogle Scholar
  5. [5]
    N. Thangapandian, S.B. Prabu, K.A. Padmanabhan, Mater. Sci. Eng., A 649, 229 (2016)CrossRefGoogle Scholar
  6. [6]
    Z.S. Wang, Y.J. Guan, G.C. Wang, C.K. Zhong, J. Mater. Process. Technol. 215, 205 (2015)CrossRefGoogle Scholar
  7. [7]
    I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng., A 486, 662 (2008)CrossRefGoogle Scholar
  8. [8]
    A. Goloborodko, O. Sitdikov, R. Kaibyshev, H. Miura, T. Sakai, Mater. Sci. Eng., A 381, 121 (2004)CrossRefGoogle Scholar
  9. [9]
    P. Rodriguez-Calvillo, J.M. Cabrera, Mater. Sci. Eng., A 625, 311 (2015)CrossRefGoogle Scholar
  10. [10]
    L.L. Guo, F. Fujita, J. Magnes. Alloys 3, 95 (2015)CrossRefGoogle Scholar
  11. [11]
    A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Philos. Mag. 81, 2629 (2001)CrossRefGoogle Scholar
  12. [12]
    J.P. Li, J. Shen, X.D. Yan, B.P. Mao, Trans. Nonferrous Metall. Soc. China 20, 189 (2010)CrossRefGoogle Scholar
  13. [13]
    S.T. Zhao, C.L. Meng, F.X. Mao, W.P. Hu, G. Gottstein, Mater. Sci. Eng., A 76, 54 (2014)Google Scholar
  14. [14]
    T. Li, K. Zhang, X.G. Li, Z.W. Du, Y.J. Li, M.L. Ma, G.L. Shi, J. Magnes. Alloys 1, 47 (2013)CrossRefGoogle Scholar
  15. [15]
    V. Sklenicka, J. Dvorak, P. Kral, Z. Stonawska, M. Svoboda, Mater. Sci. Eng., A 410, 408 (2005)CrossRefGoogle Scholar
  16. [16]
    M. Karimi, M.R. Toroghinejad, J. Dutkiewicz, Mater. Charact. 122, 103 (2016)CrossRefGoogle Scholar
  17. [17]
    X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig, Mater. Sci. Eng., A 460, 204 (2007)CrossRefGoogle Scholar
  18. [18]
    N. Kamikawa, N. Tsuji, Mater. Trans. 53, 30 (2012)CrossRefGoogle Scholar
  19. [19]
    M.A. Meyers, A. Mishra, D.J. Benson, J. Mater. 58, 41 (2006)Google Scholar
  20. [20]
    X.H. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T. Zhu, X.Z. Liao, Acta Mater. 109, 300 (2016)CrossRefGoogle Scholar
  21. [21]
    S.V. Bobylev, M.Y. Gutkin, I.A. Ovidko, Acta Mater. 52, 3793 (2004)CrossRefGoogle Scholar
  22. [22]
    X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 63, 560 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Thangapandian
    • 1
  • S. Balasivanandha Prabu
    • 2
  • K. A. Padmanabhan
    • 2
  1. 1.Department of Mechanical EngineeringSt. Joseph’s Institute of TechnologyChennaiIndia
  2. 2.Department of Mechanical Engineering, College of Engineering GuindyAnna UniversityChennaiIndia

Personalised recommendations