Synergistic Effect of NaCl and SO2 on the Initial Atmospheric Corrosion of Zinc Under Wet–Dry Cyclic Conditions

  • Qi Yin
  • Zhen-Yao WangEmail author
  • Miao-Ran Liu
  • Chen Pan


The synergistic effect of NaCl and SO2 on the atmospheric corrosion of zinc has been studied at equivalent total but different ratios of molar deposition rate under wet–dry cyclic conditions. The results show that the corrosion rates, corrosion morphologies and the composition of the corrosion products are strongly influenced by the molar deposition rate ratio of NaCl and SO2 (NaCl/SO2). The corrosivity of NaCl and SO2 toward zinc increases in order of SO2 < 1:3 < 3:1 < NaCl < 1:1. The corrosion morphology is patchy corrosion for Group 1:1, while it is pocking corrosion for the other four experimental groups. The corrosion product containing sulfur and chlorine detected on zinc is Gordaite (NaZn4SO4(OH)6Cl·6H2O), which has quite porous structure and was supposed to cause the patchy corrosion tendency of zinc in Group 1:1. In addition, soluble zinc corrosion products, which can inhibit the atmospheric corrosion process of zinc, were found on zinc samples in Groups 1:3 and SO2 and connected to the lower corrosion rates of zinc in these two groups.


Atmospheric corrosion Zinc Synergistic effect Corrosivity Corrosion morphology Gordaite 



The investigation is supported by the National Science Fund of China under the Contract Nos. 51671197 and 51601199 and by Guangzhou Industry-university-research Collaborative Innovation Alliance Special Project under the Contract No. 201604046014.


  1. [1]
    I.O. Wallinder, C. Leygraf, Corrosion. 1060, 73 (2017)Google Scholar
  2. [2]
    Q. Qu, C.W. Yan, Y. Wan, C.N. Cao, Corros. Sci. 2789, 44 (2002)Google Scholar
  3. [3]
    T.E. Graedel, J. Electrochem. Soc. C193, 136 (1989)Google Scholar
  4. [4]
    D. de la Fuente, J.G. Castano, M. Morcillo, Corros. Sci. 1420, 49 (2007)Google Scholar
  5. [5]
    Z.Y. Cui, X.G. Li, K. Xiao, C.F. Dong, Z.Y. Liu, L.W. Wang, Corrosion. 731, 70 (2014)Google Scholar
  6. [6]
    Y.W. Liu, Z.Y. Wang, G.W. Cao, Y. Cao, Y. Huo, Mater. Chem. Phys. 243, 198 (2017)Google Scholar
  7. [7]
    Y. Chen, Y. Yang, J.X. Zhang, X. Zhang, N.W. Dai, L.C. Zhang, J. Electrochem. Soc. C385, 165 (2018)Google Scholar
  8. [8]
    X. Zhang, J.X. Zhang, N.W. Dai, Y. Yang, X.J. Yuan, F.H. Cao, J.Q. Zhang, Mater. Chem. Phys. 232, 206 (2018)Google Scholar
  9. [9]
    Q.L. Cheng, S.H. Song, L.Y. Song, B.R. Hou, J. Electrochem. Soc. C380, 160 (2013)Google Scholar
  10. [10]
    J.E. Svensson, L.G. Johansson, Corros. Sci. 2225, 38 (1996)Google Scholar
  11. [11]
    Z.Y. Chen, D. Persson, C. Leygraf, Corros. Sci. 111, 50 (2008)Google Scholar
  12. [12]
    I. S. Cole, Materials. 10, 1288 (2017)Google Scholar
  13. [13]
    A.K. Neufeld, I.S. Cole, A.M. Bond, S.A. Furman, Corros. Sci. 555, 44 (2002)Google Scholar
  14. [14]
    T. Prosek, D. Thierry, C. Taxen, J. Maixner, Corros. Sci. 2676, 49 (2007)Google Scholar
  15. [15]
    W.H.J. Vernon, Trans. Faraday Soc. 0255, 27 (1931)Google Scholar
  16. [16]
    S. Oesch, M. Faller, Corros. Sci. 1505, 39 (1997)Google Scholar
  17. [17]
    J.E. Svensson, L.G. Johansson, Corros. Sci. 721, 34 (1993)Google Scholar
  18. [18]
    Y.J. Liu, Z.Y. Wang, W. Ke, Corros. Sci. 169, 80 (2014)Google Scholar
  19. [19]
    ISO 8407, Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens (ISO, Geneva, 2009)Google Scholar
  20. [20]
    Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci. 997, 51 (2009)Google Scholar
  21. [21]
    L. Nasdala, T. Witzke, B. Ullrich, R. Brett, Am. Mineral. 1111, 83 (1998)Google Scholar
  22. [22]
    F. Zhu, D. Persson, D. Thierry, C. Taxen, Corrosion. 1256, 56 (2000)Google Scholar
  23. [23]
    I.S. Cole, T.H. Muster, S.A. Furman, N. Wright, A. Bradbury, J. Electrochem. Soc. C244, 155 (2008)Google Scholar
  24. [24]
    R. Lindstrom, J.E. Svensson, L.G. Johansson, J. Electrochem. Soc. 1751, 147 (2000)Google Scholar
  25. [25]
    D. Persson, D. Thierry, O. Karlsson, Corros. Sci. 152, 126 (2017)Google Scholar
  26. [26]
    T. Falk, J.E. Svensson, L.G. Johansson, J. Electrochem. Soc. 2993, 145 (1998)Google Scholar
  27. [27]
    M.G. Alvarez, J.R. Galvele, Corrosion. 285, 32 (1976)Google Scholar
  28. [28]
    R. Lindstrom, J.E. Svensson, L.G. Johansson, J. Electrochem. Soc. B57, 149 (2002)Google Scholar
  29. [29]
    W. Feitknecht, H.R. Oswald, Helv. Chim. Acta 334, 49 (1966)Google Scholar
  30. [30]
    C.N. Cao, Principles of Electrochemistry of Corrosion, 3rd edn. (Chemical Industry Press, Beijing, 2008), pp. 233–234Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qi Yin
    • 1
    • 2
  • Zhen-Yao Wang
    • 1
    Email author
  • Miao-Ran Liu
    • 1
    • 3
  • Chen Pan
    • 1
  1. 1.Environmental Corrosion Center, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations