Mechanical Relaxation of a Ti36.2Zr30.3Cu8.3Fe4Be21.2 Bulk Metallic Glass: Experiments and Theoretical Analysis

  • J. C. QiaoEmail author
  • Y. H. Chen
  • G. J. Lyu
  • K. K. Song
  • J. M. Pelletier
  • Y. YaoEmail author


The dynamic mechanical relaxation behavior of Ti36.2Zr30.3Cu8.3Fe4Be21.2 bulk metallic glass with good glass-forming ability was investigated by mechanical spectroscopy. The mechanical relaxation behavior was analyzed in the framework of quasi-point defects model. The experimental results demonstrate that the atomic mobility of the metallic glass is closely associated with the correlation factor χ. The physical aging below the glass transition temperature Tg shows a non-Debye relaxation behavior, which could be well described by stretched Kohlrausch exponential equation. The Kohlrausch exponent \(\beta_{\text{aging}}\) reflects the dynamic heterogeneities of the metallic glass. Both concentration of “defects” and atomic mobility decrease caused by the in situ successive heating during the mechanical spectroscopy experiments.


Metallic glasses Mechanical relaxation Physical aging Quasi-point defects 



The research was supported by the National Natural Science Foundation of China (Nos. 51611130120, 11772257, 11572249, 51871132). J.C. Qiao is also supported by the Fundamental Research Funds for the Central Universities (Nos. 3102018ZY010, 3102017HQZZ012).


  1. [1]
    A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R Rep. 74, 71 (2013)CrossRefGoogle Scholar
  2. [2]
    W.H. Wang, Prog. Mater. Sci. 57, 487 (2012)CrossRefGoogle Scholar
  3. [3]
    F.F. Wu, J.S. Wei, K.C. Chan, S.H. Chen, R.D. Zhao, G.A. Zhang, X.F. Wu, Sci. Rep. 7, 42598 (2017)CrossRefGoogle Scholar
  4. [4]
    M. Chen, NPG Asia Mater. 3, 82 (2011)CrossRefGoogle Scholar
  5. [5]
    H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16, 183 (2013)CrossRefGoogle Scholar
  6. [6]
    J.C. Qiao, J.M. Pelletier, J. Mater. Sci. Technol. 30, 523 (2014)CrossRefGoogle Scholar
  7. [7]
    J.C. Qiao, Q. Wang, D. Crespo, Y. Yang, J.M. Pelletier, Chin. Phys. B 26, 016402 (2017)CrossRefGoogle Scholar
  8. [8]
    R. Richert, Phys. Rev. Lett. 104(4), 085702 (2010)CrossRefGoogle Scholar
  9. [9]
    P. Luo, Y.Z. Li, H.Y. Bai, P. Wen, W.H. Wang, Phys. Rev. Lett. 116, 175901 (2016)CrossRefGoogle Scholar
  10. [10]
    B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V.M. Giordano, M. Gonzalez-Silveira, Phys. Rev. Lett. 109, 165701 (2012)CrossRefGoogle Scholar
  11. [11]
    Q. Wang, J.J. Liu, Y.F. Ye, T.T. Liu, S. Wang, C.T. Liu, J. Lu, Y. Yang, Mater. Today 20, 293 (2017)CrossRefGoogle Scholar
  12. [12]
    S.V. Nemilov, Y.S. Balashov, Glass Phys. Chem. 42, 119 (2016)CrossRefGoogle Scholar
  13. [13]
    J.C. Qiao, J. Cong, Q. Wang, J.M. Pelletier, Y. Yao, J. Alloys Compd. 749, 262 (2018)CrossRefGoogle Scholar
  14. [14]
    F.X. Qin, Y. Zhou, C. Ji, Z.H. Dan, G.Q. Xie, S. Yang, Acta Metall. Sin. (Engl. Lett.) 29, 1011 (2016)CrossRefGoogle Scholar
  15. [15]
    J. Mei, J. Li, H. Kou, J.-L. Soubeyroux, H. Fu, L. Zhou, J. Alloys Compd. 467, 235 (2009)CrossRefGoogle Scholar
  16. [16]
    J. Qiao, S. Feng, J. Pelletier, D. Crespo, E. Pineda, Y. Yao, J. Alloys Compd. 726, 195 (2017)CrossRefGoogle Scholar
  17. [17]
    H.B. Yu, K. Samwer, Phys. Rev. B 90, 114201 (2014)Google Scholar
  18. [18]
    L. Zhang, Z.W. Zhu, A.M. Wang, H. Li, H.M. Fu, H.W. Zhang, H.F. Zhang, Z.Q. Hu, J. Alloys Compd. 562, 205 (2013)CrossRefGoogle Scholar
  19. [19]
    Y.H. Sun, A. Concustell, M.A. Carpenter, J.C. Qiao, A.W. Rayment, A.L. Greer, Acta Mater. 112, 132 (2016)CrossRefGoogle Scholar
  20. [20]
    Y. Wu, W.L. Song, Z.Y. Zhang, X.D. Hui, D. Ma, X.L. Wang, X.C. Shang, Z.P. Lu, Chin. Phys. B 56, 3960 (2011)Google Scholar
  21. [21]
    J.C. Qiao, J.M. Pelletier, Intermetallics 28, 40 (2012)CrossRefGoogle Scholar
  22. [22]
    J.C. Qiao, Y. Yao, J.M. Pelletier, L.M. Keer, Int. J. Plast. 82, 62 (2016)CrossRefGoogle Scholar
  23. [23]
    Q. Wang, J.M. Pelletier, J.J. Blandin, J. Alloys Compd. 504, 357 (2010)CrossRefGoogle Scholar
  24. [24]
    J. Perez, Polymer 29, 483 (1988)CrossRefGoogle Scholar
  25. [25]
    J. Perez, Solid State Ion. 39, 69 (1990)CrossRefGoogle Scholar
  26. [26]
    R. Rinaldi, R. Gaertner, L. Chazeau, C. Gauthier, Int. J. Non-Linear Mech. 46, 496 (2011)CrossRefGoogle Scholar
  27. [27]
    M.B.M. Mangion, J.Y. Cavaille, J. Perez, Philos. Mag. A Phys. Condens. Matter Struct. Defect Mech. Prop. 66, 773 (1992)Google Scholar
  28. [28]
    K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction (CRC Press, Boca Raton, 2008)CrossRefGoogle Scholar
  29. [29]
    D.P. Wang, Z.G. Zhu, R.J. Xue, D.W. Ding, H.Y. Bai, W.H. Wang, J. Appl. Phys. 114, 362 (2013)Google Scholar
  30. [30]
    J.C. Qiao, J.M. Pelletier, R. Casalini, J. Phys. Chem. B 117, 13658 (2013)CrossRefGoogle Scholar
  31. [31]
    X.D. Wang, J.Z. Jiang, S. Yi, J. Solids Non-Cryst. 353, 4157 (2007)CrossRefGoogle Scholar
  32. [32]
    J.C. Qiao, J.M. Pelletier, C. Esnouf, Y. Liu, H. Kato, J. Alloys Compd. 607, 139 (2014)CrossRefGoogle Scholar
  33. [33]
    J.M. Pelletier, J. Non-Cryst. Solids 354, 3666 (2008)CrossRefGoogle Scholar
  34. [34]
    L. Berthier, Physics 4, 42 (2011)CrossRefGoogle Scholar
  35. [35]
    R. Richert, J. Phys.-Condens. Matter 14, 26721-1 (2002)CrossRefGoogle Scholar
  36. [36]
    J.C. Qiao, J.M. Pelletier, H.C. Kou, X. Zhou, Intermetallics 28, 128 (2012)CrossRefGoogle Scholar
  37. [37]
    J. Qiao, B. Sun, J. Gu, M. Song, J. Pelletier, J. Qiao, Y. Yao, Y. Yang, J. Alloys Compd. 724, 921 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Mechanical, Electrical and Information EngineeringShandong University (Weihai)WeihaiChina
  3. 3.MATEIS, UMR CNRS5510, Bat. B. Pascal, INSA-LyonUniversité de LyonVilleurbanne CedexFrance

Personalised recommendations