Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 194–204 | Cite as

Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg–8Li–2Ca Alloy

  • Bing-Yu Qian
  • Wei Miao
  • Min Qiu
  • Fan Gao
  • Dong-Hui Hu
  • Jian-Feng Sun
  • Rui-Zhi WuEmail author
  • Boris Krit
  • Sergey Betsofen


Calcium phosphate (CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation (MAO) in an alkaline Na3PO4–Ca[C3H7O6P] base solution at the different applied voltages. Scanning electron microscope and X-ray diffraction were employed to characterize the microstructure and phase composition of the coatings, respectively. The corrosion resistance of the coatings was assessed by potential dynamic polarization curves, electrochemical impedance spectroscopy and hydrogen evolution experiment in simulated body fluids solution. The friction and wear properties were evaluated by friction and wear testing machine. The results demonstrate that the coating surface is porous and mainly composed of MgO, Ca5(PO4)3(OH) and CaH2P2O5. With the increase in voltage, the corrosion resistance and wear resistance of the MAO coating are both enhanced. The corrosion current density of the MAO coating decreases about two orders of the magnitude compared to the substrate. Additionally, wear and corrosion mechanisms are discussed.


Magnesium alloy Micro-arc oxidation Electrochemical impedance Wear mechanisms 



This work was supported by the National Natural Science Foundation of China (Nos. 51671063, 51771060 and 51871068), the Key Laboratory of Lightweight and high strength structural materials of Jiangxi Province (No. 20171BCD40003), the Research Fund for the Doctoral Program of Higher Education (No. 20132304110006), Heilongjiang Province Natural Science Foundation (No. ZD2017010), the Fundamental Research Funds for the Central Universities (No. HEUCFG201834), the Harbin City Application Technology Research and Development Project (Nos. 2015RQXXJ001 and 2017RAQXJ032), the Science and Technology Innovation Project (No. 009-031-001).


  1. [1]
    P. Ji, R.Y. Long, L.G. Hou, R.W. Wu, J.H. Zhang, M.L. Zhang, Surf. Coat. Technol. 350, 428 (2018)CrossRefGoogle Scholar
  2. [2]
    Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, C.G. Lin, J. Mater. Sci. Technol. 341, 550 (2018)Google Scholar
  3. [3]
    R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 60, 65 (2014)CrossRefGoogle Scholar
  4. [4]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 245, 34 (2018)Google Scholar
  5. [5]
    T.Z. Wang, H.P. Zheng, R.Z. Wu, J.L. Yang, X.D. Ma, M.L. Zhang, Adv. Eng. Mater. 18, 304 (2016)CrossRefGoogle Scholar
  6. [6]
    B.S. Pugazhendhi, A. Kar, K. Sinnaeruvadi, S. Suwas, Arch. Civ. Mech. Eng. 18, 1332 (2018)CrossRefGoogle Scholar
  7. [7]
    T.L. Zhu, J.F. Sun, C.L. Cui, R.Z. Wu, S. Betsofen, Z. Leng, J.H. Zhang, M.L. Zhang, Mater. Sci. Eng. A 600, 1 (2014)CrossRefGoogle Scholar
  8. [8]
    R.Z. Wu, M.L. Zhang, Mater. Sci. Eng. A 520, 36 (2009)CrossRefGoogle Scholar
  9. [9]
    R.Z. Wu, X.Y. Guo, D.Y. Li, J. Alloys Compd. 616, 408 (2014)CrossRefGoogle Scholar
  10. [10]
    K.H. Kim, N.D. Nam, J.G. Kim, K.S. Shin, H.C. Jung, Intermetallics 19, 1831 (2011)CrossRefGoogle Scholar
  11. [11]
    W. Miao, C.B. Che, K.N. Fu, R.Z. Wu, L.G. Hou, J.H. Zhang, M.L. Zhang, J. Mater. Eng. Perform. 26, 4831 (2017)CrossRefGoogle Scholar
  12. [12]
    S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng. C Mater. Biol. Appl. 68, 948 (2016)CrossRefGoogle Scholar
  13. [13]
    A. Apelfeld, B. Krit, V. Ludin, N. Morozova, B. Vladimirov, R.Z. Wu, Surf. Coat. Technol. 322, 127 (2017)CrossRefGoogle Scholar
  14. [14]
    D. Thirumalaikumarasamy, V. Balasubramanian, S.S. Sabari, J. Magn. Alloy 5, 133 (2017)CrossRefGoogle Scholar
  15. [15]
    G.B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizad, J. Magn. Alloy 5, 74 (2017)CrossRefGoogle Scholar
  16. [16]
    Y.J. Lu, L.L. Tan, H.L. Xiang, B.C. Zhang, K. Yang, Acta. Metall. Sin. (Engl. Lett.) 25, 287 (2012)Google Scholar
  17. [17]
    X.P. Zhang, Z.P. Zhao, F.M. Wu, Y.L. Wang, J. Wu, J. Mater. Sci. 42, 8523 (2007)CrossRefGoogle Scholar
  18. [18]
    Z.P. Yao, L.L. Li, Z.H. Jiang, Appl. Surf. Sci. 255, 6724 (2009)CrossRefGoogle Scholar
  19. [19]
    X.H. Xu, L. Ping, M.Q. Guo, M.Z. Fang, Appl. Surf. Sci. 256, 2367 (2010)CrossRefGoogle Scholar
  20. [20]
    P. Wan, X. Lin, L.L. Tan, L. Li, W.R. Li, K. Yang, Appl. Surf. Sci. 282, 186 (2013)CrossRefGoogle Scholar
  21. [21]
    J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel, Corros. Sci. 51, 2483 (2009)CrossRefGoogle Scholar
  22. [22]
    Z.Q. Zhao, Q.L. Pan, J.K. Yan, J. Ye, Y.R. Liu, Vacuum 150, 155 (2018)CrossRefGoogle Scholar
  23. [23]
    L.Y. Cui, H. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.C. Zeng, S.Q. Li, Z.L. Wang, J. Mater. Sci. Technol. 33, 1263 (2017)CrossRefGoogle Scholar
  24. [24]
    X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews, Surf. Coat. Technol. 116–119, 1055 (1999)CrossRefGoogle Scholar
  25. [25]
    Z.D. Liu, F.U. Hua, M.J. Sun, Z.Y. Zhang, Light Met. 49, 45 (2009)Google Scholar
  26. [26]
    Q. Du, D.Q. Wei, Y.M. Wang, S.C. Lu, S. Liu, Y. Zhou, D.C. Jia, Bioact. Mater. 3, 426 (2018)CrossRefGoogle Scholar
  27. [27]
    F. Liu, J.L. Xu, D.Z. Yu, F.P. Wang, L.C. Zhao, Mater. Chem. Phys. 121, 172 (2010)CrossRefGoogle Scholar
  28. [28]
    S. Durdu, A. Aytac, M. Ustaa, J. Alloys Compd. 509, 8601 (2011)CrossRefGoogle Scholar
  29. [29]
    H. Tang, D.Z. Yu, Y. Luo, F.P. Wang, Appl. Surf. Sci. 264, 816 (2013)CrossRefGoogle Scholar
  30. [30]
    X.Y. Jing, Y. Yuan, F. Yu, L.W. Song, M.L. Zhang, T. Wang, Y.G. Zhu, Rare Metal Mat. Eng. 38, 1154 (2009)Google Scholar
  31. [31]
    D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Ceram. Int. 38, 4607 (2012)CrossRefGoogle Scholar
  32. [32]
    M. Fazel, H.R. Salimijazi, M.A. Golozar, M.R. Garsivaz Jazi, Appl. Surf. Sci. 324, 751 (2015)CrossRefGoogle Scholar
  33. [33]
    L.Q. Wu, R.Z. Wu, L.G. Hou, J.H. Zhang, M.L. Zhang, J. Alloy. Compd. 750, 530 (2018)CrossRefGoogle Scholar
  34. [34]
    G.D. Bian, L.L. Wang, J. Wu, J.L. Zheng, H.J. Sun, D.C. Herbert, Surf. Coat. Technol. 277, 251 (2015)CrossRefGoogle Scholar
  35. [35]
    Y.K. Pan, C.Z. Chen, D.G. Wang, Z.Q. Lin, Mater. Chem. Phys. 141, 842 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bing-Yu Qian
    • 1
  • Wei Miao
    • 2
  • Min Qiu
    • 3
  • Fan Gao
    • 3
  • Dong-Hui Hu
    • 3
  • Jian-Feng Sun
    • 1
  • Rui-Zhi Wu
    • 2
    • 3
    Email author
  • Boris Krit
    • 4
  • Sergey Betsofen
    • 4
  1. 1.College of Material Science and EngineeringHeilongjiang University of Science and TechnologyHarbinChina
  2. 2.Key Laboratory of Superlight Materials and Surface Technology, Ministry of EducationHarbin Engineering UniversityHarbinChina
  3. 3.College of ScienceHeihe UniversityHeiheChina
  4. 4.Moscow Aviation InstituteNational Research UniversityMoscowRussia

Personalised recommendations