Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 253–262 | Cite as

Influence of Extrusion Speed on the Microstructure Evolution, Interface Bonding and Mechanical Response of Mg MB26/Al 7075 Composite Rod

  • Yu Chen
  • Rui Zhang
  • Tao ZhouEmail author
  • Li Hu
  • Jian TuEmail author
  • Lai-Xin Shi
  • Yan Zhi
  • Li-Wei Lu
  • Qiang ChenEmail author
  • Ben-Hong Liao
  • Lei Liu
  • Wen-Jun Ge
  • Jing Xiao
  • Ming-Bo Yang
Article
  • 39 Downloads

Abstract

The Mg MB26/Al 7075 composite rod, in which Mg MB26 serves as the sleeve and Al 7075 serves as the core, is fabricated via the process of co-extrusion. The influence of extrusion speed on the microstructure evolution, interface bonding and mechanical response of the Mg MB26/Al 7075 composite rod is investigated. The results show that the typical extrusion texture of Mg sleeve does not change during co-extrusion; however, the average grain size in the Mg sleeve slightly changes from 1.57 μm in the case of extrusion speed of 0.3 mm/s to 2.78 μm in the case of extrusion speed of 2.1 mm/s. The thickness of interface transition layer increases significantly from 5.5 to 50 μm, and therefore, the interface bonding becomes deteriorative with increasing extrusion speed; in particular, many cavities emerge in the case of 1.2 and 2.1 mm/s.

Keywords

MB26/7075 composite rod Extrusion speed Microstructure evolution Interface bonding Mechanical response 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51301213, 51501026 and 51701034), the Basic and Advanced Research Project of CQ CSTC (Grant Nos. cstc2016jcyjA0452, cstc2017jcyjAX0775 and cstc2017jcyjAX0062), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant Nos. KJ1600922, KJ1600924).

References

  1. [1]
    J. Zhang, S. Yan, H. Qu, Int. J. Hydrog. Energy 43, 3 (2018)CrossRefGoogle Scholar
  2. [2]
    L.G. Hou, T.Z. Wang, R.Z. Wu, J.H. Zhang, X.L. Li, M.L. Zhang, A.P. Dong, B.D. Sun, J. Mater. Sci. Technol. 34, 317 (2018)CrossRefGoogle Scholar
  3. [3]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xing, Z.Q. Zhang, Y. Liu, X.H. Cheng, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  4. [4]
    H.J. Wu, T.Z. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, J. Mater. Process. Technol. 254, 265 (2018)CrossRefGoogle Scholar
  5. [5]
    K.L. Zheng, D.J. Politis, L.L. Wang, J.G. Lin, Int. J. Mach. Tools Manuf. 1, 2 (2018)Google Scholar
  6. [6]
    H.P. Zheng, J.L. Yang, R.Z. Wu, T.Z. Wang, X.D. Ma, L.G. Hou, M.L. Zhang, S. Betsofen, B. Krit, Adv. Eng. Mater. 18, 10 (2016)CrossRefGoogle Scholar
  7. [7]
    K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, K. Wu, Compos. Part A Appl. Sci. 43, 8 (2012)Google Scholar
  8. [8]
    C.Z. Luo, W. Liang, Z.Q. Chen, J.J. Zhang, C.Z. Chi, F.Q. Yang, Mater. Charact. 84, 10 (2013)CrossRefGoogle Scholar
  9. [9]
    C. Hai, M.Y. Zheng, Rare Metal Mat. Eng. 45, 9 (2016)Google Scholar
  10. [10]
    G.S. Huang, W. Xu, G.J. Huang, F.S. Pan, Mater. Sci. Forum 610–613, 791 (2009)CrossRefGoogle Scholar
  11. [11]
    Y. Mahmoodkhani, M.A. Wells, J. Mater. Process. Technol. 232, 175 (2016)CrossRefGoogle Scholar
  12. [12]
    M. Paramsothy, M. Gupta, N. Srikanth, J. Compos. Mater. 42, 24 (2008)Google Scholar
  13. [13]
    M. Paramsothy, M. Gupta, N. Srikanth, J. Compos. Mater. 42, 13 (2008)Google Scholar
  14. [14]
    M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, J. Phys. D Appl. Phys. 41, 17 (2008)CrossRefGoogle Scholar
  15. [15]
    M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, J. Compos. Mater. 44, 9 (2009)Google Scholar
  16. [16]
    M. Paramsothy, N. Srikanth, M. Gupta, J. Alloys Compd. 461, 1 (2008)CrossRefGoogle Scholar
  17. [17]
    M. Paramsothy, N. Srikanth, S.F. Hassan, M. Gupta, Mater. Sci. Eng. A 494, 1 (2008)CrossRefGoogle Scholar
  18. [18]
    M. Thirumurugan, S.A. Rao, S. Kumaran, T.S. Rao, J. Mater. Process. Technol. 211, 10 (2011)CrossRefGoogle Scholar
  19. [19]
    A. Sankaran, S. Vadakke Madam, A. Nouri, M.R. Barnett, Scr. Mater. 66, 10 (2012)CrossRefGoogle Scholar
  20. [20]
    B. Feng, Y.C. Xin, F.L. Guo, H.H. Yu, Y. Wu, Q. Liu, Acta Mater. 120, 379 (2016)Google Scholar
  21. [21]
    B. Feng, Y.C. Xin, R. Hong, H.H. Yu, Y. Wu, Q. Liu, Scr. Mater. 98, 56 (2015)CrossRefGoogle Scholar
  22. [22]
    B. Feng, Y.C. Xin, H.H. Yu, R. Hong, Q. Liu, Mater. Sci. Eng. A 675, 204 (2016)CrossRefGoogle Scholar
  23. [23]
    S.H. Park, B.S. You, R.K. Mishra, A.K. Sachdev, Mater. Sci. Eng. A 583, 3 (2014)Google Scholar
  24. [24]
    C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng, S. Kamado, Mater. Sci. Eng. A 685, 159 (2017)CrossRefGoogle Scholar
  25. [25]
    H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang, Mater. Sci. Eng. A 445, 6 (2007)Google Scholar
  26. [26]
    D. Andrzejewski, J. Jakubowicz, J. Borowski, Arch. Civ. Mech. Eng. 16, 2 (2016)CrossRefGoogle Scholar
  27. [27]
    S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, B.S. You, J. Alloys Compd. 667, 170 (2016)CrossRefGoogle Scholar
  28. [28]
    H. Yu, S. Hyuk Park, B. Sun You, Y. Min Kim, H. Shun Yu, S. Soo Park, Mater. Sci. Eng. A 583, 25 (2013)CrossRefGoogle Scholar
  29. [29]
    Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han, J. Alloys Compd. 468, 1 (2009)CrossRefGoogle Scholar
  30. [30]
    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, D.L. Chen, J. Mater. Sci. Technol. 34, 7 (2018)CrossRefGoogle Scholar
  31. [31]
    L.Z. Liu, X.H. Chen, F.S. Pan, A. Tang, X.L. Wang, J. Liu, S.H. Gao, Mater. Sci. Eng. A 669, 259 (2016)CrossRefGoogle Scholar
  32. [32]
    A. Singh, M. Watanabe, A. Kato, A.P. Tsai, Mater. Sci. Eng. A 397, 1 (2005)CrossRefGoogle Scholar
  33. [33]
    Y.Q. Wu, X.M. Lu, T. Shen, T. Nonferr, Metal. Soc. (Engl. Lett.) 23, 2 (2013)Google Scholar
  34. [34]
    C.Y. Sun, Y.P. Cong, Q.D. Zhang, M.W. Fu, L. Li, J. Mater. Process. Technol. 253, 99 (2018)CrossRefGoogle Scholar
  35. [35]
    H. Zengin, Y. Turen, Mater. Chem. Phys. 214, 1 (2018)CrossRefGoogle Scholar
  36. [36]
    E. Priel, Z. Ungarish, N.U. Navi, J. Mater. Process. Technol. 236, 103 (2016)CrossRefGoogle Scholar
  37. [37]
    X.R. Li, W. Liang, X.G. Zhao, Y. Zhang, X.P. Fu, F.C. Liu, J. Alloys Compd. 471, 1 (2009)CrossRefGoogle Scholar
  38. [38]
    S.R. Agnew, J.F. Nie, Scr. Mater. 63, 7 (2010)CrossRefGoogle Scholar
  39. [39]
    S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 18 (2010)Google Scholar
  40. [40]
    L.M. Zhao, Z.D. Zhang, Scr. Mater. 58, 4 (2008)Google Scholar
  41. [41]
    X.B. Liu, R.S. Chen, E.H. Han, Mater. Process. Technol. 209, 10 (2009)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Chen
    • 1
  • Rui Zhang
    • 1
  • Tao Zhou
    • 1
    Email author
  • Li Hu
    • 1
  • Jian Tu
    • 1
    Email author
  • Lai-Xin Shi
    • 1
  • Yan Zhi
    • 1
  • Li-Wei Lu
    • 2
  • Qiang Chen
    • 3
    • 4
    Email author
  • Ben-Hong Liao
    • 1
  • Lei Liu
    • 1
  • Wen-Jun Ge
    • 1
  • Jing Xiao
    • 1
  • Ming-Bo Yang
    • 1
  1. 1.College of Material Science and EngineeringChongqing University of TechnologyChongqingChina
  2. 2.Institute of Light Metal Structural MaterialsHunan University of Science and TechnologyXiangtanChina
  3. 3.Southwest Technology and Engineering Research InstituteChongqingChina
  4. 4.Precision Forming Integrated Manufacturing Technology of Collaborative Innovation CenterChongqingChina

Personalised recommendations