Advertisement

Coil Ambient Temperature and Its Influence on the Formation of Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel-Teeming System

  • Ming He
  • Xian-Liang Li
  • Xing-An Liu
  • Xiao-Wei Zhu
  • Tie Liu
  • Qiang Wang
Article
  • 13 Downloads

Abstract

Ambient temperature of induction coil is an important factor to influence the implementation of the electromagnetic induction-controlled automated steel-teeming (EICAST) technology. Meanwhile, it also affects the formation of Fe–C alloy blocking layer, which determines the length and installation position of induction coil. An experimental platform was designed to imitate actual working conditions in a ladle with the EICAST system. Ambient temperature of induction coil under high-temperature condition was measured to verify the accuracy of numerical result. After containing molten steel for 120 min and steel teeming for 40 min, the ambient temperature on the upper side of induction coil is 791 °C. In addition, the position of blocking layer in a 110 t ladle was measured by sand-collection and steel-pour methods, and the criterion temperatures of blocking layer in numerical simulation process were corrected. When the refining temperature is 1600 °C and the containing time of molten steel is 120 min, the thickness of blocking layer is 130 mm, and the distance between the upper surface of blocking layer and the upper surface of nozzle brick is 154 mm. When the criterion temperatures are 919 °C and 428 °C, the numerical results can be used to confirm the position of blocking layer and the installation position of induction coil.

Keywords

Clean steel EICAST technology Heat transfer Blocking layer Coil ambient temperature 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. U1560207).

References

  1. [1]
    Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31, 681 (2018)CrossRefGoogle Scholar
  2. [2]
    F.P. Tang, D.G. Li, X.W. Liao, X.F. Wang, X.F. Wan, J.X. Jia, J.G. Zhang, J. Iron Steel Res. Int. 18, 9 (2011)CrossRefGoogle Scholar
  3. [3]
    G.G. Cheng, M.L. Wang, X.E. Yang, Y.L. Li, Y.G. Wang, L.Y. Wang, P. Zhao, Acta Metall. Sin. (Engl. Lett.) 16, 379 (2003)Google Scholar
  4. [4]
    H.J. Visser, R. Boom, ISIJ Int. 46, 1771 (2006)CrossRefGoogle Scholar
  5. [5]
    Z.Y. Lai, Z. Xie, L.C. Zhong, ISIJ Int. 48, 793 (2008)CrossRefGoogle Scholar
  6. [6]
    D.P. Tan, P.Y. Li, X.H. Pan, J. Iron Steel Res. Int. 16, 1 (2009)CrossRefGoogle Scholar
  7. [7]
    L. Cheng, W.G. Pang, K.Y. Peng, D.Z. Liu, W.Q. Shi, X.H. Peng, China Metall. 23, 31 (2013)Google Scholar
  8. [8]
    L.F. Zhang, B.G. Thomas, X.H. Wang, K. Cai, in 85th Steelmaking Conference Proceedings, ISS-AIME, Warrendale, PA, vol. 431 (2002)Google Scholar
  9. [9]
    J. Yang, China Pat. CN104690241A (2015)Google Scholar
  10. [10]
    W.D. Liu, China Pat. CN102218527A (2011)Google Scholar
  11. [11]
    Y.L. Sun, Y.Z. Luo, X.C. Jia, Cont. Cast. 41, 23 (2016)Google Scholar
  12. [12]
    Y.F. Huang, P.Y. Du, Y.S. Li, Refract 40, 433 (2006)Google Scholar
  13. [13]
    F. Farshidfar, M.G. Kakroudi, J. Iron. Steel Res. Int. 19, 11 (2012)CrossRefGoogle Scholar
  14. [14]
    C. Zhang, Z. Li, L.Y. Zhu, Y.K. Xie, Cont. Cast. (China) 42, 46 (2017)Google Scholar
  15. [15]
    J.H. He, W.D. Qiu, Y.H. Liang, J.H. Nie, Y.C. Yin, Refract 48, 74 (2014)Google Scholar
  16. [16]
    J.H. Zhu, S.L. Chen, S.H. Zhou, H.P. Zhang, Cont. Cast. 4, 43 (2005)Google Scholar
  17. [17]
    H.X. Zhu, C.J. Deng, C. Bai, W.G. Zhang, Steelmaking 24, 49 (2008)Google Scholar
  18. [18]
    G.J. Wang, X.M. Li, Y.H. Pan, J. Hong, Z.B. Guo, M. Zhang, Steelmaking 23, 24 (2007)Google Scholar
  19. [19]
    D.J. Li, Q. Wang, X.A. Liu, A. Gao, X.B. Wang, J. Dong, K. Marukawa, J.C. He, J. Iron. Steel Res. Int. 19, 766 (2012)Google Scholar
  20. [20]
    Q. Wang, D.J. Li, X.A. Liu, X.B. Wang, J. Dong, J.C. He, J. Iron. Steel Res. Int. 22, 30 (2015)CrossRefGoogle Scholar
  21. [21]
    M. He, Q. Wang, X.A. Liu, C.Y. Shi, T. Liu, J.C. He, High Temp. Mater. Proc. 36, 441 (2017)Google Scholar
  22. [22]
    Q. Wang, J.C. He, T. Liu, New Technologies of Electromagnetic Metallurgy (Science Press, Beijing, 2015), p. 90Google Scholar
  23. [23]
    A. Gao, Q. Wang, D.J. Li, B.G. Jin, K. Wang, J.C. He, Acta Metall. Sin. 46, 634 (2010)CrossRefGoogle Scholar
  24. [24]
    X.A. Liu, Q. Wang, D.J. Li, G.L. Li, D.Q. Geng, A. Gao, J.C. He, ISIJ Int. 54, 482 (2014)CrossRefGoogle Scholar
  25. [25]
    M. He, X.L. Li, Z.Q. Cao, S.L. Dong, T. Liu, Q. Wang, Vacuum 146, 130 (2017)CrossRefGoogle Scholar
  26. [26]
    W.H. Tong, F.M. Shen, H. Shibata, W.Z. Wang, Y.S. Yang, Y. Waseda, R. Takahashi, J.I. Yagi, Acta Metall. Sin. 38, 983 (2002)Google Scholar
  27. [27]
    S.M. Yang, W.Q. Tao, Heat Transfer (Higher Education Press, Beijing, 2006), p. 555Google Scholar
  28. [28]
    A. Gao, D.J. Li, Q. Wang, K. Wang, B.G. Jin, K. Marukawa, J.C. He, ISIJ Int. 50, 1770 (2010)CrossRefGoogle Scholar
  29. [29]
    A. Gao, Q. Wang, D.J. Li, H.S. Chai, L.J. Zhao, J.C. He, Acta Metall. Sin. 47, 219 (2011)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ming He
    • 1
    • 2
  • Xian-Liang Li
    • 1
    • 3
  • Xing-An Liu
    • 1
  • Xiao-Wei Zhu
    • 1
    • 2
  • Tie Liu
    • 1
  • Qiang Wang
    • 1
  1. 1.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education)Northeastern UniversityShenyangChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina
  3. 3.School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations