Advertisement

Superparamagnetic CoFe2O4@Au with High Specific Absorption Rate and Intrinsic Loss Power for Magnetic Fluid Hyperthermia Applications

  • Sandip Sabale
  • Vidhya Jadhav
  • Shubhangi Mane-Gavade
  • Xiao-Ying Yu
Article
  • 16 Downloads

Abstract

CoFe2O4 nanoparticles (NPs) and surface modified with gold (Au) have been synthesized by a thermal decomposition method. The obtained NPs and formation of CoFe2O4@Au core–shell (CS) were confirmed by characterizing their structural and optical properties using X-ray powder diffraction (XRD) patterns, Fourier transform infrared spectroscopy, Raman spectroscopy, UV–Visible and photoluminescence studies. Morphological and compositional studies were carried out using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy, while the magnetic properties were determined using alternating gradient magnetometer and Mossbauer to define the magneto-structural effects of shell formation on the core NPs. Induction heating properties of CoFe2O4 and CoFe2O4@Au CS magnetic nanoparticles (MNPs) have been investigated and correlated with magneto-structural properties. Specific absorption rate and intrinsic loss power were calculated for these MNPs within the human tolerable range of frequency and amplitude, suggesting their potential in magnetic fluid hyperthermia therapy for possible cancer treatment.

Keywords

CoFe2O4@Au Superparamagnetic Specific absorption rate (SAR) Intrinsic loss power (ILP) Magnetic fluid hyperthermia 

Notes

Acknowledgements

Author (Sandip Sabale) is thankful to University Grants Commission, New Delhi, India, for Raman Fellowship to work in USA (F. No. 5-105/2016 (IC), February 10, 2016. Authors are grateful to the Department of Science & Technology, New Delhi, for the grants under DST-FIST program (No. SR/FST/college-151/2013 (C)) to Jaysingpur College, Jaysingpur. Xiao-Ying Yu thanks the MS3 Initiative at the Pacific Northwest National Laboratory (PNNL) operated by Battelle for the Department of Energy. We thank Rachel Komorek for English editing.

Supplementary material

40195_2018_830_MOESM1_ESM.doc (649 kb)
Supplementary material 1 (DOC 649 kb)

References

  1. [1]
    H. Shokrollahi, J. Magn. Mag. Mater. 426, 74 (2017)CrossRefGoogle Scholar
  2. [2]
    S.M. Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Chem. Commun. 52(48), 7528 (2016)CrossRefGoogle Scholar
  3. [3]
    S. Sabale, P. Kandesar, V. Jadhav, R. Komorek, R.K. Motkuri, X.Y. Yu, Biomater. Sci. 5(11), 2212 (2017)CrossRefGoogle Scholar
  4. [4]
    J.C. Li, Y. Hu, J. Yang, P. Wei, W.J. Sun, M.W. Shen, G.X. Zhang, X.Y. Shi, Biomaterials 38, 10 (2015)CrossRefGoogle Scholar
  5. [5]
    W. Gao, L.F. Ji, L. Li, G.W. Cui, K.H. Xu, P. Li, B. Tang, Biomaterials 33(14), 3710 (2012)CrossRefGoogle Scholar
  6. [6]
    J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I. Park, J. Cheon, Nat. Nano. 6(7), 418 (2011)CrossRefGoogle Scholar
  7. [7]
    S. Sabale, V. Jadhav, V. Khot, X. Zhu, M. Xin, H. Chen, J. Mater. Sci. Mater. Med. 26(3), 127 (2015)CrossRefGoogle Scholar
  8. [8]
    S. Sabale, V. Khot, V. Jadhav, X.L. Zhu, Y.H. Xu, Acta Metall. Sin. (Engl. Lett.) 27(6), 1122 (2014)CrossRefGoogle Scholar
  9. [9]
    N.R. Panda, D. Sahu, B.S. Acharya, P. Nayak, S.P. Patil, D. Das, Acta Metall. Sin. (Engl. Lett.) 27(4), 563 (2014)CrossRefGoogle Scholar
  10. [10]
    Y. Pineiro, Z. Vargas, J. Rivas, M.A. Lopez-Quintela, Eur. J. Inorg. Chem. 27, 4495 (2015)CrossRefGoogle Scholar
  11. [11]
    N. Bachan, A. Asha, W. Jothi Jeyarani, D. Arun Kumar, J. Merline Shyla, Acta Metall. Sin. (Engl. Lett.) 28(11), 1317 (2015)CrossRefGoogle Scholar
  12. [12]
    V. Revathi, S. Dinesh Kumar, P. Chithra Lekha, V. Subramanian, T.S. Natarajan, C. Muthamizhchelvan, Acta Metall. Sin. (Engl. Lett.)27(4), 557 (2014)CrossRefGoogle Scholar
  13. [13]
    H.Y. Zhao, L. Liu, J. He, C.C. Pan, H. Li, Z.Y. Zhou, Y. Ding, D. Huo, Y. Hu, Biomaterials 51, 194 (2015)CrossRefGoogle Scholar
  14. [14]
    I. Robinson, L.D. Tung, S. Maenosono, C. Walti, N.T.K. Thanh, Nanoscale 2(12), 2624 (2010)CrossRefGoogle Scholar
  15. [15]
    Y.M. Shao, L.C. Zhou, C. Bao, Q. Wu, W.L. Wu, M.Z. Liu, New J. Chem. 40(11), 9684 (2016)CrossRefGoogle Scholar
  16. [16]
    Q.D. Xia, S.S. Fu, G.J. Ren, F. Chai, J.J. Jiang, F.Y. Qu, New J. Chem. 40(1), 818 (2016)CrossRefGoogle Scholar
  17. [17]
    A. Mikalauskaite, R. Kondrotas, G. Niaura, A. Jagminas, J. Phys. Chem. C 119(30), 17398 (2015)CrossRefGoogle Scholar
  18. [18]
    G.V.M. Jacintho, A.G. Brolo, P. Corio, P.A.Z. Suarez, J.C. Rubim, J. Phys. Chem. C 113(18), 7684 (2009)CrossRefGoogle Scholar
  19. [19]
    G. Shemer, E. Tirosh, T. Livneh, G. Markovich, J. Phys. Chem. C 111(39), 14334 (2007)CrossRefGoogle Scholar
  20. [20]
    M. Abdulla-Al-Mamun, Y. Kusumoto, T. Zannat, Y. Horie, H. Manaka, RSC Adv. 3(21), 7816 (2013)CrossRefGoogle Scholar
  21. [21]
    C.X. Zhang, Q. Luo, J.H. Shi, L.Y. Yue, Z.B. Wang, X.H. Chen, S.M. Huang, Nanoscale 9(8), 2852 (2017)CrossRefGoogle Scholar
  22. [22]
    P.L. Andrade, V.A.J. Silva, J.C. Maciel, M.M. Santillan, N.O. Moreno, L.D. Valladares, A. Bustamante, S.M.B. Pereira, M.P.C. Silva, J.A. Aguiar, Hyperfine Interact. 224(1–3), 217 (2014)CrossRefGoogle Scholar
  23. [23]
    S. Karamipour, M.S. Sadjadi, N. Farhadyar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 148, 146 (2015)CrossRefGoogle Scholar
  24. [24]
    R.R. Wildeboer, P. Southern, Q.A. Pankhurst, J. Phys. D Appl. Phys. (2014).  https://doi.org/10.1088/0022-3727/47/49/495003 CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earth and Biological Sciences DirectoratePNNLRichlandUSA
  2. 2.Department of Chemistry, Jaysingpur College JaysingpurShivaji UniversityKolhapurIndia

Personalised recommendations