Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 63–73 | Cite as

Fabrication and Photocatalytic Activity of Cu2O Nanobelts on Nanoporous Cu Substrate

  • Yun Li
  • Chuan Ji
  • Yu-Chen Chi
  • Zhen-Hua DanEmail author
  • Hai-Feng Zhang
  • Feng-Xiang QinEmail author
Article
  • 77 Downloads

Abstract

In this paper, we report the fabrication of the photocatalysts composed of Cu2O nanobelts and nanoporous Cu (NP Cu) substrate, which is obtained by soaking the NP Cu in dehydrated ethanol. The NP Cu substrate is achieved by dealloying of Ti40.6Zr9.4Cu40.6Ni6.3Sn3.1 amorphous ribbons in HF solutions. The dealloying process is considered to be a thermally activated process, obeying the Arrhenius law. The surface diffusivity increases with increasing dealloying temperature and concentration of HF solutions. The activation energy of the diffusion of Cu adatoms is estimated to be 76.4 kJ/mol. The Cu2O nanobelts with the width of 10–15 nm and the length of about 1 μm are formed on the surface of NP Cu after immersion in dehydrated ethanol. The photocatalysts of Cu2O on nanoporous Cu exhibit superior photocatalytic activity toward the degradation of methyl orange and methylene blue under the irradiation of the sunlight due to the coexistence of Cu2O semiconductor nanobelts and large amount of heterojunctions as flowing path for photoelectrons.

Keywords

Nanoporous Cu Dealloying Cu2Photocatalytic activity 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 51671106 and the Natural Science Foundation of Jiangsu Province under Grant Nos. BK20171424 and BK2015153.

References

  1. [1]
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001)CrossRefGoogle Scholar
  2. [2]
    Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16, 1897 (2004)CrossRefGoogle Scholar
  3. [3]
    Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, J. Frenzel, J. Phys. Chem. C 113, 12629 (2009)CrossRefGoogle Scholar
  4. [4]
    S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412, 169 (2001)CrossRefGoogle Scholar
  5. [5]
    L.H. Qian, W. Shen, B. Das, B. Shen, G.W. Qin, Chem. Phys. Lett. 479, 259 (2009)CrossRefGoogle Scholar
  6. [6]
    D.V. Pugh, A. Dursun, S.G. Corcoran, J. Mater. Res. 18, 216 (2002)CrossRefGoogle Scholar
  7. [7]
    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, Y.L. Xing, J. Electrochem. Soc. 157, D666 (2010)CrossRefGoogle Scholar
  8. [8]
    X.L. Tan, Y.Y. Tang, Y. Liu, J.S. Luo, K. Li, X.B. Liu, Mater. Rev. 23, 68 (2009)Google Scholar
  9. [9]
    W.Y. Zhang, Z.P. Xi, M. Fang, Y.N. Li, G.Z. Li, L. Zhang, Rare Metal Mater. Eng. 37, 1129 (2008)Google Scholar
  10. [10]
    A. Dursun, D.V. Pugh, S.G. Corcoran, J. Electrochem. Soc. 150, B355 (2003)CrossRefGoogle Scholar
  11. [11]
    Z.C. Liu, S. Koh, C.F. Yu, P. Strasser, J. Electrochem. Soc. 154, B1192 (2007)CrossRefGoogle Scholar
  12. [12]
    A. Dursun, D.V. Pugh, S.G. Corcoran, J. Electrochem. Soc. 152, B65 (2005)CrossRefGoogle Scholar
  13. [13]
    W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, Y.L. Xing, Corros. Sci. 53, 809 (2011)CrossRefGoogle Scholar
  14. [14]
    J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, K. Sieradzki, J. Mater. Res. 21, 2611 (2006)CrossRefGoogle Scholar
  15. [15]
    F.U. Renner, Y. Gründer, P.F. Lyman, J. Zegenhagen, Thin Solid Films 515, 5574 (2007)CrossRefGoogle Scholar
  16. [16]
    S.L. Zhu, J.L. He, X.J. Yang, Z.D. Cui, L.L. Pi, Electrochem. Commun. 13, 250 (2011)CrossRefGoogle Scholar
  17. [17]
    Z.H. Dan, F.X. Qin, Y. Sugawara, I. Muto, A. Makino, N. Hara, Mater. Lett. 94, 128 (2013)CrossRefGoogle Scholar
  18. [18]
    J.S. Yu, Y. Ding, C.X. Xu, A. Inoue, T. Sakurai, M.W. Chen, Chem. Mater. 20, 4548 (2008)CrossRefGoogle Scholar
  19. [19]
    N. Weng, F. Wang, F.X. Qin, W.Y. Tang, Z.H. Dan, Materials 10, 1001 (2017)CrossRefGoogle Scholar
  20. [20]
    I. Grozdanov, Mater. Lett. 19, 281 (1994)CrossRefGoogle Scholar
  21. [21]
    Y.W. Tang, Z.G. Chen, Z.J. Jia, L.S. Zhang, J.L. Li, Mater. Lett. 59, 434 (2005)CrossRefGoogle Scholar
  22. [22]
    B. Zhou, Z.G. Liu, H.X. Wang, W.H. Su, Catal. Lett. 132, 75 (2009)CrossRefGoogle Scholar
  23. [23]
    T.Y. Kou, C.H. Jin, C. Zhang, Z.H. Zhang, RSC Adv. 2, 12636 (2012)CrossRefGoogle Scholar
  24. [24]
    L.F. Li, W.X. Zhang, C. Feng, X.W. Luan, J. Jiang, M.L. Zhang, Mater. Lett. 107, 123 (2013)CrossRefGoogle Scholar
  25. [25]
    X.Q. Li, T. Fang, Y.S. Luo, J.L. Li, Chemistry 69, 290 (2006)Google Scholar
  26. [26]
    Z.H. Dan, J.F. Lu, F. Li, F.X. Qin, H. Chang, Nanomaterials 8, 18 (2018)CrossRefGoogle Scholar
  27. [27]
    Z.H. Dan, Y.L. Yang, F.X. Qin, H. Wang, H. Chang, Materials 11, 446 (2018)CrossRefGoogle Scholar
  28. [28]
    J.M. Dona, J. González-Velasco, J. Phys. Chem. 97, 4714 (1993)CrossRefGoogle Scholar
  29. [29]
    F. Montalenti, R. Ferrando, Phys. Rev. B Condens. Matter 59, 5881 (1999)CrossRefGoogle Scholar
  30. [30]
    E.G. Seebauer, C.E. Allen, Prog. Surf. Sci. 49, 265 (1995)CrossRefGoogle Scholar
  31. [31]
    Z.H. Dan, F.X. Qin, S. Yamaura, Y. Sugawara, I. Muto, N. Hara, J. Alloys Compd. 581, 567 (2013)CrossRefGoogle Scholar
  32. [32]
    F.X. Qin, Y. Li, Y.C. Chi, Z.H. Dan, H.F. Zhang, J. Mater. Sci., under reviewGoogle Scholar
  33. [33]
    F. Wang, H. Wang, H.F. Zhang, Z.H. Dan, N. Weng, W.Y. Tang, F.X. Qin, J. Non-Cryst. Solids 491, 34 (2018)CrossRefGoogle Scholar
  34. [34]
    M.J. Mandry, G. Rosenblatt, J. Electrochem. Soc. 119, 29 (1972)CrossRefGoogle Scholar
  35. [35]
    I. Medved, A. Trnik, R. Cerny, Jaids-J. Acq. Imm. Def. 7, 86 (2013)Google Scholar
  36. [36]
    Y.W. Tan, X.Y. Xue, Q. Peng, Y.D. Li, Nano Lett. 7, 3723 (2007)CrossRefGoogle Scholar
  37. [37]
    C.H. Kuo, C.H. Chen, M.H. Huang, Adv. Funct. Mater. 17, 3773 (2007)CrossRefGoogle Scholar
  38. [38]
    H. Xu, W.Z. Wang, W. Zhu, J. Phys. Chem. B 110, 13829 (2006)CrossRefGoogle Scholar
  39. [39]
    E. Ko, J. Choi, K. Okamoto, Y. Taket, J. Lee, ChemPhysChem 7, 1505 (2006)CrossRefGoogle Scholar
  40. [40]
    S. Kenane, L. Piraux, J. Mater. Res. 17, 401 (2002)CrossRefGoogle Scholar
  41. [41]
    B.L. Tang, G.H. Jiang, Z. Wei, X. Li, X.H. Wang, T.T. Jiang, Acta Metall. Sin. (Engl. Lett.). 27, 124 (2014)CrossRefGoogle Scholar
  42. [42]
    W.B. Liu, L. Chen, X. Dong, J.Z. Yan, N. Li, S.Q. Shi, S.C. Zhang, Sci. Rep. 6, 36084 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.Shengyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of ScienceShengyangChina

Personalised recommendations