Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 566–572 | Cite as

Formation of Vacancy-Type Dislocation Loops in Hydrogen-Ion-Implanted Fe–Cr Alloy

  • Yu-Feng Du
  • Li-Juan Cui
  • Wen-Tuo Han
  • Fa-Rong WanEmail author
Article
  • 27 Downloads

Abstract

Fe–10 at.%Cr alloy was implanted with hydrogen ions at room temperature, followed by annealing at high temperatures. The annealing process made the defects develop into large dislocation loops. The nature of the dislocation loops formed after annealing was studied by the evolution of loops under in situ electron irradiation in high-voltage electron microscope. It indicated that only interstitial-type loops were observed when annealed at 550 °C and below, but vacancy-type loops started to form at the temperature higher than 600 °C. According to the previous study of our group, the presence of chromium element made the formation temperature of vacancy-type loops higher than that in pure iron. The effect of alloying elements on the formation temperature of the vacancy-type loops was discussed.

Keywords

Hydrogen implantation Interstitial-type loops Vacancy-type loops Fe–Cr alloy High-voltage electron microscope 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51471026) The authors gratefully acknowledge the High-Voltage Electron Microscope Laboratory in Hokkaido University, Japan. The help and suggestions from Professor Naoyuki Hashimoto were highly appreciated.

References

  1. [1]
    F. Soisson, T. Jourdan, Acta Mater. 103, 870 (2016)CrossRefGoogle Scholar
  2. [2]
    S. Kano, H.L. Yang, R. Suzue et al., Nucl. Mater. Energy 9, 331 (2016)CrossRefGoogle Scholar
  3. [3]
    A. Prokhodtseva, B. Décamps, A. Ramar et al., Acta Mater. 61, 6958 (2013)CrossRefGoogle Scholar
  4. [4]
    M. Hernández-Mayoral, C. Heintze, E. Oñorbe, J. Nucl. Mater. 474, 88 (2016)CrossRefGoogle Scholar
  5. [5]
    D. Gelles, J. Nucl. Mater. 283–287, 838 (2000)CrossRefGoogle Scholar
  6. [6]
    R. Schäublin, J. Henry, Y. Dai, C R Phys. 9, 389 (2008)CrossRefGoogle Scholar
  7. [7]
    Z. Chang, D. Terentyev, N. Sandberg et al., Nucl. Instrum. Methods Phys. Res. B 352, 81 (2015)CrossRefGoogle Scholar
  8. [8]
    J. Gao, D. Yufeng, S. Ohnuki, F. Wan, J. Nucl. Mater. 481, 81 (2016)CrossRefGoogle Scholar
  9. [9]
    V.I. Dubinko, S.A. Kotrechko, V.F. Klepikov et al., Def. Solids 164, 647 (2009)CrossRefGoogle Scholar
  10. [10]
    B. Yao, D.J. Edwards, R.J. Kurtz, J. Nucl. Mater. 434, 402 (2013)CrossRefGoogle Scholar
  11. [11]
    M. Hernández-Mayorala, Z. Yao, M.L. Jenkins, Philos. Mag. 88, 2881 (2008)CrossRefGoogle Scholar
  12. [12]
    J. Gao, L. Cui, F. Wan, Mater. Charact. 111, 1 (2016)CrossRefGoogle Scholar
  13. [13]
    B.L. Eyre, A.F. Bartlett, Philos. Mag. 12, 261 (1965)CrossRefGoogle Scholar
  14. [14]
    B.C. Masters, Philos. Mag. 11, 881 (1965)CrossRefGoogle Scholar
  15. [15]
    I.M. Robertson, W.E. King, M.A. Kirk, Scr. Metall. 18, 317 (1984)CrossRefGoogle Scholar
  16. [16]
    Z. Yao, M.L. Jenkins, M. Hernández-Mayoral et al., Philos. Mag. 90, 4623 (2010)CrossRefGoogle Scholar
  17. [17]
    B.D. Wirth, G.R. Odette, D. Maroudas, J. Nucl. Mater. 276, 33 (2000)CrossRefGoogle Scholar
  18. [18]
    Z. Chang, D. Terentyev, N. Sandberg et al., J. Nucl. Mater. 461, 221 (2015)CrossRefGoogle Scholar
  19. [19]
    H. Watanabe, S. Masaki, S. Masubuchi et al., J. Nucl. Mater. 439, 268 (2013)CrossRefGoogle Scholar
  20. [20]
    J. Chen, P. Jung, W. Hoffelner, Acta Mater. 56, 250 (2008)CrossRefGoogle Scholar
  21. [21]
    D. Brimbal, B. Décamps, J. Henry et al., Acta Mater. 64, 391 (2014)CrossRefGoogle Scholar
  22. [22]
    N. Hashimoto, S. Sakuraya, J. Tanimoto et al., J. Nucl. Mater. 445, 224 (2014)CrossRefGoogle Scholar
  23. [23]
    M. Horiki, T. Yoshiie, M. Iseki et al., J. Nucl. Mater. 271&272, 256 (1999)CrossRefGoogle Scholar
  24. [24]
    P.P. Liu, Y.M. Zhu, M.Z. Zhao et al., Fusion Eng. and Des. 95, 20 (2015)CrossRefGoogle Scholar
  25. [25]
    F. Wan, Q. Zhan, Y. Long et al., J. Nucl. Mater. 455, 253 (2014)CrossRefGoogle Scholar
  26. [26]
    Y. Huang, F. Wan, X. Xiao et al., Fusion Eng. Des. 85, 2203 (2010)CrossRefGoogle Scholar
  27. [27]
    F. Wan, S. Ohnuki, H. Takahashi et al., Philos. Mag. A 53, L21 (1986)CrossRefGoogle Scholar
  28. [28]
    R.E. Stoller, M.B. Toloczko, G.S. Was et al., Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013)CrossRefGoogle Scholar
  29. [29]
    H. Föll, M. Wilkens, Phys. Stat. Solidi 31, 519 (1975)CrossRefGoogle Scholar
  30. [30]
    M. Kiritani, Ultramicroscopy 39, 135 (1991)CrossRefGoogle Scholar
  31. [31]
    P.P. Liu, J.W. Bai, F.R. Wan et al., J. Nucl. Mater. 423, 47 (2012)CrossRefGoogle Scholar
  32. [32]
    M.R. Gilbert, Z. Yao, M.A. Kirk et al., J. Nucl. Mater. 386–388, 36 (2009)CrossRefGoogle Scholar
  33. [33]
    Z. Yao, M. Hernández Mayoral, M.L. Jenkins et al., Philos. Mag. 88, 2851 (2008)CrossRefGoogle Scholar
  34. [34]
    M.L. Jenkins, C.A. English, B.L. Eyer, Philos. Mag. 38, 97 (1978)CrossRefGoogle Scholar
  35. [35]
    W. Jäger, M. Wilkens, Phys. Stat. Solidi 32, 89 (1975)CrossRefGoogle Scholar
  36. [36]
    X. Yi, M.L. Jenkins, M. Bricenoa et al., Philos. Mag. 93, 1715 (2013)CrossRefGoogle Scholar
  37. [37]
    M. Horiki, S. Arai, Y. Satoh, M. Kiritani, J. Nucl. Mater. 255, 165 (1998)CrossRefGoogle Scholar
  38. [38]
    M.J. Aliaga, R. Schäublin, J.F. Löffler et al., Acta Mater. 101, 22 (2015)CrossRefGoogle Scholar
  39. [39]
    T. Kato, H. Takahashi, M. Izumiya, J. Nucl. Mater. 189, 167 (1992)CrossRefGoogle Scholar
  40. [40]
    M.J. Hackett, R. Najafabadi, G.S. Was, J. Nucl. Mater. 389, 279 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Feng Du
    • 1
  • Li-Juan Cui
    • 1
  • Wen-Tuo Han
    • 1
  • Fa-Rong Wan
    • 1
    Email author
  1. 1.Department of Materials Physics and Chemistry, School of Materials Science and EngineeringUniversity of Science and Technology, BeijingBeijingChina

Personalised recommendations