Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 74–88 | Cite as

Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering

  • Erfan Abbasi
  • Quanshun Luo
  • Dave Owens
Article
  • 89 Downloads

Abstract

The microstructure and mechanical properties of NiCrMoV- and NiCrSi-alloyed medium-carbon steels were investigated after multiple tempering. After austenitising, the steels were hardened by oil quenching and subsequently double or triple tempered at temperatures from 250 to 500 °C. The samples were characterised using scanning electron microscopy and X-ray diffraction, while the mechanical properties were evaluated by Vickers hardness testing, V-notched Charpy impact testing and tensile testing. The results showed that the retained austenite was stable up to 400 °C and the applied multiple tempering below this temperature did not lead to a complete decomposition of retained austenite in both steels. It was also found that the microstructure, hardness and impact toughness varied mainly as a function of tempering temperature, regardless of the number of tempering stages. Moreover, the impact toughness of NiCrMoV steel was rather similar after single/triple tempering at different temperatures, while NiCrSi steel exhibited tempered martensite embrittlement after single/double tempering at 400 °C. The observed difference was mainly attributed to the effect of precipitation behaviour due to the effect of alloying additions in the studied steels.

Keywords

Medium-carbon steels Multiple tempering Alloying addition Mechanical properties Retained austenite Precipitation behaviour 

Notes

Acknowledgements

The authors would like to acknowledge the sponsorship provided by Innovate UK through the Knowledge Transfer Partnership Programme (KTP010269 Sheffield Hallam University and Tyzack Machine Knives Ltd.).

References

  1. [1]
    E. Abbasi, Q. Luo, D. Owens, Wear 398–399, 29 (2018)CrossRefGoogle Scholar
  2. [2]
    Y. Wang, T. Lei, J. Liu, Wear 231, 12 (1999)CrossRefGoogle Scholar
  3. [3]
    Y. Tomita, Int. Mater. Rev. 45, 23 (2000)CrossRefGoogle Scholar
  4. [4]
    M. Assefpour-Dezfuly, A. Brownrigg, Metall. Trans. A 20, 1951 (1989)CrossRefGoogle Scholar
  5. [5]
    G. Krauss, Steel Res. Int. 77, 1 (2017)Google Scholar
  6. [6]
    W.J. Nam, C.S. Lee, D.Y. Ban, Mater. Sci. Eng. A 289, 8 (2000)CrossRefGoogle Scholar
  7. [7]
    G.R. Speich, W.C. Leslie, Metall. Trans. 3, 1043 (1972)CrossRefGoogle Scholar
  8. [8]
    M. Jung, S.J. Lee, Y.K. Lee, Metall. Mater. Trans. A 40, 551 (2009)CrossRefGoogle Scholar
  9. [9]
    F. Nazemi, J. Hamel-Akré, P. Bocher, J. Mater. Sci. 53, 6198 (2018)CrossRefGoogle Scholar
  10. [10]
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, London, 2009)Google Scholar
  11. [11]
    L.C.F. Canale, R.A. Mesquita, G.E. Totten, Failure Analysis of Heat Treated Steel Components (ASM International, Ohio, 2008)Google Scholar
  12. [12]
    W.M. Garrison, U.S. Patent 2016/0237535 A1 (2016)Google Scholar
  13. [13]
    H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016)CrossRefGoogle Scholar
  14. [14]
    A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, G. Krauss, Acta Mater. 77, 17 (2014)CrossRefGoogle Scholar
  15. [15]
    A.K. Sinha, B.P. Division, Defects and Distortion in Heat Treated Parts (ASM International, Russell, 1991)Google Scholar
  16. [16]
    X. Luo, G.E. Totten, J. ASTM Int. 8, 1 (2011)Google Scholar
  17. [17]
    MCh. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45, 1247 (2014)CrossRefGoogle Scholar
  18. [18]
    D. Barbier, Adv. Eng. Mater. 14, 122 (2016)Google Scholar
  19. [19]
    E. Abbasi, Wear Behaviour of CBS, HISI and W1.2746 Steels (Sheffield Hallam University, Sheffield, 2017)Google Scholar
  20. [20]
    E. Abbasi, Q. Luo, D. Owens, Mater. Sci. Eng. A 725, 65 (2018)CrossRefGoogle Scholar
  21. [21]
    C.L. Briant, Mater. Sci. Technol. 5, 138 (1989)CrossRefGoogle Scholar
  22. [22]
    W.S. Lee, T.T. Su, J. Mater. Process. Technol. 87, 198 (1999)CrossRefGoogle Scholar
  23. [23]
    E. Abbasi, W.M. Rainforth, Mater. Sci. Eng. A 651, 822 (2016)CrossRefGoogle Scholar
  24. [24]
    B. Kim, E. Boucard, T. Sourmail, D.S. Martín, N. Gey, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 68, 169 (2014)CrossRefGoogle Scholar
  25. [25]
    Ph Lemble, A. Pineau, J.L. Castagne, Ph Dumoulin, Met. Sci. 13, 496 (1979)CrossRefGoogle Scholar
  26. [26]
    R.M. Horn, R.O. Ritchie, Metall. Trans. A 9, 1039 (1978)CrossRefGoogle Scholar
  27. [27]
    P. Verma, G.S. Rao, N.C.S. Srinivas, V. Singh, Mater. Sci. Eng. A 683, 172 (2017)CrossRefGoogle Scholar
  28. [28]
    L.Å. Norström, Met. Sci. 10, 429 (1976)CrossRefGoogle Scholar
  29. [29]
    J. Liu, H. Yu, J. Wang, T. Zhou, C. Song, Steel Res. Int. 86, 1082 (2015)CrossRefGoogle Scholar
  30. [30]
    W.J. Nam, C.S. Lee, Mater. Sci. Technol. 14, 827 (1998)CrossRefGoogle Scholar
  31. [31]
    S. Sackl, M. Zuber, H. Clemens, S. Primig, Metall. Mater. Trans. A 47, 3694 (2016)CrossRefGoogle Scholar
  32. [32]
    Y. Xiao, W. Li, H.S. Zhao, X.W. Lu, X.J. Jin, Mater. Charact. 117, 84 (2016)CrossRefGoogle Scholar
  33. [33]
    A. Zhang, G. Wang, S. Jia, U.S. Patent 2014/0124102 A1 (2014)Google Scholar
  34. [34]
    T. Sakuma, N. Watanabe, T. Nishizawa, Trans. Jpn. 21, 159 (1980)Google Scholar
  35. [35]
    Y. Tomita, T. Okawa, Mater. Sci. Eng. A 172, 145 (1993)CrossRefGoogle Scholar
  36. [36]
    J. Krawczyk, P. Bala, J. Pacyna, J. Microsc. 237, 411 (2010)CrossRefGoogle Scholar
  37. [37]
    Y. Tomita, K. Okabayashi, Metall. Trans. A 14, 2387 (1983)CrossRefGoogle Scholar
  38. [38]
    M. Niikura, J.W. Morris, Metall. Trans. A 11, 1531 (1980)CrossRefGoogle Scholar
  39. [39]
    E. Abbasi, W.M. Rainforth, Mater. Sci. Technol. 32, 1721 (2016)CrossRefGoogle Scholar
  40. [40]
    J.G. Speer, E.D. Moor, K.O. Findley, D.K. Matlock, B.C.D. Cooman, D.V. Edmonds, Metall. Mater. Trans. A 42, 3591 (2011)CrossRefGoogle Scholar
  41. [41]
    H. Bhadeshia, D.V. Edmonds, Met. Sci. 13, 325 (1979)Google Scholar
  42. [42]
    R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, X. Jin, Metall. Mater. Trans. A 45, 1892 (2014)CrossRefGoogle Scholar
  43. [43]
    D. Delagnes, F. Pettinari-Sturmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier, Acta Mater. 60, 5877 (2012)CrossRefGoogle Scholar
  44. [44]
    Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R. Misra, G.D. Wang, Mater. Sci. Eng. A 675, 153 (2016)CrossRefGoogle Scholar
  45. [45]
    P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55, 4877 (2007)CrossRefGoogle Scholar
  46. [46]
    W.R. Clough, R.M. Vennett, R.J. Hrubec, J. Basic Eng. 90, 21 (1968)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK
  2. 2.Tyzack Machine Knives LtdSheffieldUK

Personalised recommendations