Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 618–628 | Cite as

Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants

  • Wen-Chao Dong
  • Dian-Bao Gao
  • Shan-Ping LuEmail author
Article
  • 42 Downloads

Abstract

The residual stress evolution in a safe-end/nozzle dissimilar metal welded joint of CAP1400 nuclear power plants was investigated in the manufacturing process by finite element simulation. A finite element model, including cladding, buttering, post-weld heat treatment (PWHT) and dissimilar metal multi-pass welding, is developed based on SYSWELD software to investigate the evolution of residual stress in the aforementioned manufacturing process. The results reveal a large tensile axial residual stress, which exists at the weld zone on the inner surface, leads to a high sensitivity to stress corrosion cracking (SCC). PWHT process before dissimilar metal multi-pass welding process has a great influence on the magnitude and distribution of final axial residual stress. The risk of SCC on the inner surface of the pipe will increase if PWHT process is not taken into account. Therefore, such crucial thermal manufacturing process such as cladding, buttering and post-weld heat treatment, besides the multi-pass welding process, should be considered in the numerical model in order to accurately predict the distribution and the magnitude of the residual stress.

Keywords

CAP1400 nuclear power plants Nozzle Safe-end Dissimilar metal welding Residual stress 

Notes

Acknowledgements

This work was supported by the Open-ended Fund of the CAS Key Laboratory of Nuclear Materials and Safety Assessment (Grant No. 2015NMSAKF02).

References

  1. [1]
    P. Dong, F.W. Brust, J. Press. Vessel Technol. 122, 329 (2000)CrossRefGoogle Scholar
  2. [2]
    E.H. Han, Acta Metall. Sin. 47, 769 (2011). (in Chinese) Google Scholar
  3. [3]
    H.L. Ming, Z.M. Zhang, J.Q. Wang, E.H. Han, M.X. Su, Acta Metall. Sin. 53, 57 (2017). (in Chinese) Google Scholar
  4. [4]
    H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Nucl. Eng. Des. 241, 3234 (2011)CrossRefGoogle Scholar
  5. [5]
    O. Muránsky, M.C. Smith, P.J. Bendeich, L. Edwards, Comput. Mater. Sci. 50, 2203 (2011)CrossRefGoogle Scholar
  6. [6]
    S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, S.K. Baveja, Mater. Des. 32, 3823 (2011)CrossRefGoogle Scholar
  7. [7]
    J. Katsuyama, M. Udagawa, H. Nishikawa, M. Nakamura, K. Onizawa, E-J Adv. Maint. 2, 50 (2010)Google Scholar
  8. [8]
    T.K. Song, H.R. Bae, Y.J. Kim, K.S. Lee, Fatigue Fract. Eng. Mater. Struct. 33, 689 (2010)CrossRefGoogle Scholar
  9. [9]
    T.K. Song, Y.B. Kim, Y.J. Kim, C.Y. Oh, Proc. Mater. Sci. 3, 784 (2014)CrossRefGoogle Scholar
  10. [10]
    T.K. Song, C.Y. Oh, J.S. Kim, Y.J. Kim, K.S. Lee, C.Y. Park, Eng. Fract. Mech. 78, 1957 (2011)CrossRefGoogle Scholar
  11. [11]
    E.M. Dehaghi, H. Moshayedi, I. Sattari-Far, A.F. Arezoodar, Int. J. Press. Vessels Pip. 152, 56 (2017)CrossRefGoogle Scholar
  12. [12]
    P.J. Bendeich, O. Muránsky, C.J. Hamelin, M.C. Smith, L. Edwards, Comput. Mater. Sci. 62, 285 (2012)CrossRefGoogle Scholar
  13. [13]
    A. Joseph, S.K. Rai, T. Jayakumar, N. Murugan, Int. J. Press. Vessels Pip. 82, 700 (2005)CrossRefGoogle Scholar
  14. [14]
    P. Dong, J.K. Hong, P.J. Bouchard, Int. J. Press. Vessels Pip. 82, 258 (2005)CrossRefGoogle Scholar
  15. [15]
    T.P.T. Soanes, W. Bell, A.J. Vibert, Int. J. Press. Vessels Pip. 82, 311 (2005)CrossRefGoogle Scholar
  16. [16]
    D.A. Deng, K. Ogawa, S. Kiyoshima, N. Yanagida, K. Saito, Comput. Mater. Sci. 47, 398 (2009)CrossRefGoogle Scholar
  17. [17]
    S. Courtin, X. Ficquet, T.T.T. Le, P. Gilles, M. Yescas, in Proceedings of the ASME 2012 Pressure Vessels and Piping Conference, Toronto, Ontario, Canada, 1519 July 2012 Google Scholar
  18. [18]
    O. Doyen, D. Ayrault, A. Bonaventure, Weld. World 7, 1 (2015)Google Scholar
  19. [19]
    D.-J. Shim, S. Kalyanam, F. Brust, G. Wilkowski, M. Smith, A. Goodfellow, J. Press. Vessel Technol. 134, 051402-1 (2012)CrossRefGoogle Scholar
  20. [20]
    A. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, J.A. Williams, Int. J. Press. Vessels Pip. 83, 864 (2006)CrossRefGoogle Scholar
  21. [21]
    J. Katsuyama, H. Nishikawa, M. Udagawa, M. Nakmura, K. Onizawa, J. Press. Vessel Technol. 135, 051402-1 (2013)Google Scholar
  22. [22]
    Q. Wang, X.S. Liu, P. Wang, X. Xiong, H.Y. Fang, J. Mater. Process. Technol. 240, 77 (2017)CrossRefGoogle Scholar
  23. [23]
    S. Li, S.D. Ren, Y.B. Zhang, D. Deng, H. Murakawa, J. Mater. Process. Technol. 244, 240 (2017)CrossRefGoogle Scholar
  24. [24]
    J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15, 299 (1984)CrossRefGoogle Scholar
  25. [25]
    ESI Group, Material Database for SYSWELD 2010 (ESI France, Paris, 2009)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Nuclear Power and Petro-chemical Business GroupChina First Heavy IndustriesDalianChina

Personalised recommendations