Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 10–22 | Cite as

Enhanced Strength and Corrosion Resistance of Mg–2Zn–0.6Zr Alloy with Extrusion

  • Luan-Xiang Wang
  • Ren-Bo SongEmail author
  • Chang-Hong Cai
  • Jing-Yuan Li


The microstructure, mechanical properties and corrosion behavior of Mg–2Zn–0.6Zr alloy under the as-cast and as-extruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the as-extruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2Zn–0.6Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.


Mg–2Zn–0.6Zr Extrusion Strength Corrosion behavior 



This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700300).


  1. [1]
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)CrossRefGoogle Scholar
  2. [2]
    D. Hong, P. Saha, D. Chou, B. Lee, B.E. Collins, Z. Tan, Z. Dong, P.N. Kumta, Acta Biomater. 9, 8534 (2013)CrossRefGoogle Scholar
  3. [3]
    Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R 77, 1 (2014)CrossRefGoogle Scholar
  4. [4]
    P.C. Wong, P.H. Tsai, T.H. Li, C.K. Cheng, J. Jang, J. Huang, J. Alloys Compd. 699, 914 (2017)CrossRefGoogle Scholar
  5. [5]
    A. Hartwig, Mutat. Res. 475, 113 (2001)CrossRefGoogle Scholar
  6. [6]
    M. Alvarez-Lopez, M.D. Pereda, J.A. Del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, M.L. Escudero, Acta Biomater. 6, 1763 (2010)CrossRefGoogle Scholar
  7. [7]
    D. Vojtěch, H. Čížová, K. Volenec, Kovove Mater. 44, 211 (2006)Google Scholar
  8. [8]
    S. El-Rahman, Pharmacol. Res. 47, 189 (2003)CrossRefGoogle Scholar
  9. [9]
    N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, Acta Biomater. 6, 1714 (2010)CrossRefGoogle Scholar
  10. [10]
    G. Song, Corros. Sci. 49, 1696 (2007)CrossRefGoogle Scholar
  11. [11]
    S. Cai, T. Lei, N. Li, F. Feng, Mater. Sci. Eng. C 32, 2570 (2012)CrossRefGoogle Scholar
  12. [12]
    S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Acta Biomater. 6, 626 (2010)CrossRefGoogle Scholar
  13. [13]
    H. Jia, X. Feng, Y. Yang, Corros. Sci. 120, 75 (2017)CrossRefGoogle Scholar
  14. [14]
    H. Li, Q. Peng, X. Li, K. Li, Z. Han, D. Fang, Mater. Des. 58, 43 (2014)CrossRefGoogle Scholar
  15. [15]
    A. Prasad, P.J. Uggowitzer, Z. Shi, A. Atrens, Adv. Eng. Mater. 14, 477 (2012)CrossRefGoogle Scholar
  16. [16]
    X. Ye, M. Chen, M. Yang, J. Wei, D. Liu, J. Mater. Sci. Mater. Med. 21, 1321 (2010)CrossRefGoogle Scholar
  17. [17]
    H. Jiang, J. Wang, M. Chen, D. Liu, Mater. Sci. Eng. C 75, 1068 (2017)CrossRefGoogle Scholar
  18. [18]
    H. Jia, X. Feng, Y. Yang, J. Magnes. Alloy 3, 247 (2015)CrossRefGoogle Scholar
  19. [19]
    Y. Song, D. Shan, R. Chen, E. Han, Corros. Sci. 52, 1830 (2010)CrossRefGoogle Scholar
  20. [20]
    C. Shuai, Y. Yang, P. Wu, X. Lin, Y. Liu, Y. Zhou, P. Feng, X. Liu, S. Peng, J. Alloys Compd. 691, 961 (2017)CrossRefGoogle Scholar
  21. [21]
    Y.S. Jeong, W.J. Kim, Corros. Sci. 82, 392 (2014)CrossRefGoogle Scholar
  22. [22]
    C. Zhao, F. Pan, L. Zhang, H. Pan, K. Song, A. Tang, Mater. Sci. Eng. C 70, 1081 (2017)CrossRefGoogle Scholar
  23. [23]
    P. Wu, F. Xu, K. Deng, F. Han, Z. Zhang, R. Gao, Corros. Sci. 127, 280 (2017)CrossRefGoogle Scholar
  24. [24]
    Y. Bai, W. Cheng, S. Ma, J. Zhang, C. Guo, Y. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 487 (2018)CrossRefGoogle Scholar
  25. [25]
    Y. Zhang, J. Li, J. Li, J. Alloys Compd. 728, 37 (2017)CrossRefGoogle Scholar
  26. [26]
    C.L. Bhattacharjee, T.T. Mendis, T. Sasaki, K. Ohkubo, Hono. Scripta Mater. 67, 967 (2012)CrossRefGoogle Scholar
  27. [27]
    T. Bhattacharjee, T. Nakata, T.T. Sasaki, S. Kamado, K. Hono, Scripta Mater. 90, 37 (2014)CrossRefGoogle Scholar
  28. [28]
    Y.N. Wang, J.C. Huang, Mater. Chem. Phys. 81, 11 (2003)CrossRefGoogle Scholar
  29. [29]
    S. Baek, H.J. Kim, H.Y. Jeong, S. Sohn, H. Shin, K. Choi, K. Lee, J.G. Lee, C.D. Yim, B.S. You, H. Ha, S.S. Park, Corros. Sci. 112, 44 (2016)CrossRefGoogle Scholar
  30. [30]
    Y. Choi, S. Salman, K. Kuroda, M. Okido, Corros. Sci. 63, 5 (2012)CrossRefGoogle Scholar
  31. [31]
    Y. Song, D. Shan, E. Han, J. Mater. Sci. Technol. 33, 954 (2017)CrossRefGoogle Scholar
  32. [32]
    H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany, Corros. Sci. 64, 184 (2012)CrossRefGoogle Scholar
  33. [33]
    R. Hahn, J.G. Brunner, J. Kunze, P. Schmuki, S. Virtanen, Electrochem. Commun. 10, 288 (2008)CrossRefGoogle Scholar
  34. [34]
    B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng, Mater. Sci. Eng. C 31, 1667 (2011)CrossRefGoogle Scholar
  35. [35]
    H. Zhao, L. Wang, Y. Ren, B. Yang, S. Li, G. Qin, Acta Metall. Sin. (Engl. Lett.) 31, 575 (2018)CrossRefGoogle Scholar
  36. [36]
    Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008)CrossRefGoogle Scholar
  37. [37]
    X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, W. Ding, J. Mech. Behav. Biomed. 7, 77 (2012)CrossRefGoogle Scholar
  38. [38]
    Y. Zhou, Y. Li, D. Luo, Y. Ding, P. Hodgson, Mater. Sci. Eng. C 49, 93 (2015)CrossRefGoogle Scholar
  39. [39]
    D.R. Nugmanov, R.K. Islamgaliev, Rev. Adv. Mater. Sci. 31, 157 (2012)Google Scholar
  40. [40]
    K. Su, K.K. Deng, F.J. Xu, K.B. Nie, L. Zhang, X. Zhang, W.J. Li, Acta Metall. Sin. (Engl. Lett.) 28, 1015 (2015)CrossRefGoogle Scholar
  41. [41]
    X.G. Qiao, Y.W. Zhao, W.M. Gan, Y. Chen, M.Y. Zheng, K. Wu, N. Gao, M.J. Starink, Mater. Sci. Eng. A 619, 95 (2014)CrossRefGoogle Scholar
  42. [42]
    Y. Lu, A.R. Bradshaw, Y.L. Chiu, I.P. Jones, Mater. Sci. Eng. C 48, 480 (2015)CrossRefGoogle Scholar
  43. [43]
    Y. Song, E. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 60, 238 (2012)CrossRefGoogle Scholar
  44. [44]
    J. Chang, X. Guo, P. Fu, L. Peng, W. Ding, Electrochim. Acta 52, 3160 (2007)CrossRefGoogle Scholar
  45. [45]
    J. Liao, M. Hotta, N. Yamamoto, Corros. Sci. 61, 208 (2012)CrossRefGoogle Scholar
  46. [46]
    K.D. Ralston, N. Birbilis, Corrosion 66, 075005 (2010)CrossRefGoogle Scholar
  47. [47]
    Y. Zhang, J. Li, J. Li, J. Alloys Compd. 730, 458 (2018)CrossRefGoogle Scholar
  48. [48]
    M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M. Bilek, P.K. Chu, Corros. Sci. 91, 160 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luan-Xiang Wang
    • 1
  • Ren-Bo Song
    • 1
    Email author
  • Chang-Hong Cai
    • 1
  • Jing-Yuan Li
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations