Advertisement

Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy

  • Shuang Yu
  • Rui-Ling Jia
  • Tao Zhang
  • Fu-Hui Wang
  • Jian Hou
  • Hui-Xia Zhang
Article

Abstract

A large amount of directional and willow-like β′ phase was precipitated in Mg–10Gd–3Y–0.4Zr (GW103K) alloy after solution treatment and subsequently aged treatment (T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103K alloy, the alloy was subjected to solution treatment (T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h (T6). The microstructure evolution of the GW103K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases (β′) in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg24(Gd, Y)5 and β′ precipitates on the corrosion behavior of GW103K alloy were explored. The results showed that the corrosion rate of the GW103K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy, attributing to the fact that the relative potential differences of skeleton-like Mg24(Gd, Y)5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred. The nanoscale β′ precipitates in T6-treated alloy can retard the cathodic process.

Keywords

Magnesium alloy Aging precipitates Corrosion Potential difference Transmission electron microscopy (TEM) 

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 51531007), the Natural Science Foundation of Inner Mongolia (No. 2016MS0538) and the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (No. KF160408). The authors are grateful to Dr. Ping Qiu for modification in English.

References

  1. [1]
    M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008)CrossRefGoogle Scholar
  2. [2]
    S.B. Shen, S. Cai, X.G. Bao, P. Xu, Y. Li, S. Jiang, G.H. Xu, Chem. Eng. J. 339, 7 (2018)CrossRefGoogle Scholar
  3. [3]
    X.R. Chen, F.K. Ning, J. Hou, Q.C. Le, Y. Tang, Ultrason. Sonochem. 40, 433 (2018)CrossRefGoogle Scholar
  4. [4]
    X.W. Liu, Y. Liu, B. Jin, Y. Lu, J. Lu, J. Mater. Sci. Technol. 33, 224 (2017)CrossRefGoogle Scholar
  5. [5]
    L.P. Zhong, Y.J. Wang, M. Gong, X.W. Zheng, J. Peng, Mater. Charact. 138, 284 (2018)CrossRefGoogle Scholar
  6. [6]
    D.F. Zhang, X. Chen, F.S. Pan, L.Y. Jiang, G.S. Hu, D.L. Yu, Funct. Mater. 45, 05001 (2014)Google Scholar
  7. [7]
    R.L. Satet, M.J. Hoffmann, J. Am. Ceram. Soc. 88, 2485 (2005)CrossRefGoogle Scholar
  8. [8]
    Y.R. Wu, W.Y. Hu, L.X. Sun, J. Phys. D: Appl. Phys. 40, 7584 (2007)Google Scholar
  9. [9]
    L.L. Tang, Y.H. Zhao, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, J. Alloys Compd. 721, 577 (2017)CrossRefGoogle Scholar
  10. [10]
    Y. Gao, Q.D. Wang, J.H. Gu, Y. Zhao, Y. Tong, J.Y. Kaneda, J. Rare Earths 26, 298 (2008)CrossRefGoogle Scholar
  11. [11]
    X.B. Liu, R.S. Chen, E.H. Han, J. Alloys Compd. 465, 232 (2008)CrossRefGoogle Scholar
  12. [12]
    S.Q. Liang, D.K. Guan, X.P. Tan, L. Chen, Y. Tang, Mater. Sci. Eng., A 528, 1589 (2011)CrossRefGoogle Scholar
  13. [13]
    Q. Wang, L. Xiao, W.C. Liu, H.H. Zhang, W.D. Cui, Z.Q. Li, G.H. Wu, Mater. Sci. Eng., A 705, 402 (2017)CrossRefGoogle Scholar
  14. [14]
    S.Q. Liang, D.K. Guan, L. Chen, Z.H. Gao, H.X. Tang, X.T. Tong, R. Xiao, Mater. Des. 32, 361 (2011)CrossRefGoogle Scholar
  15. [15]
    H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, J.F. Nie, Acta Mater. 61, 453 (2013)CrossRefGoogle Scholar
  16. [16]
    D.K. Xu, E.H. Han, Y.B. Xu, Prog. Nat. Sci.-Mater. 26, 117 (2016)CrossRefGoogle Scholar
  17. [17]
    Y.X. Li, D. Qiu, Y.H. Rong, M.X. Zhang, Intermetallics 40, 45 (2013)CrossRefGoogle Scholar
  18. [18]
    J.X. Zheng, Z. Li, L.D. Tan, X.S. Xu, R.C. Luo, B. Chen, Mater. Charact. 117, 76 (2016)CrossRefGoogle Scholar
  19. [19]
    Y.C. Wan, H.C. Xiao, S.N. Jiang, B. Tang, C.M. Liu, Z.Y. Chen, L.W. Lu, Mater. Sci. Eng., A 617, 243 (2014)CrossRefGoogle Scholar
  20. [20]
    Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 33, 945 (2017)CrossRefGoogle Scholar
  21. [21]
    J.H. Liu, Y.W. Song, J.C. Chen, P. Chen, D.Y. Shan, E.H. Han, Electrochim. Acta 189, 190 (2016)CrossRefGoogle Scholar
  22. [22]
    L.M. Peng, J.W. Chang, X.W. Guo, A. Atrens, W.J. Ding, Y.H. Peng, J. Appl. Electrochem. 39, 913 (2009)CrossRefGoogle Scholar
  23. [23]
    S.Q. Liang, D.K. Guan, X.P. Tan, Mater. Des. 32, 1194 (2011)CrossRefGoogle Scholar
  24. [24]
    J.Z. Zhang, Z.X. Ma, D.F. Li, Mater. Heat Treat. 38, 73 (2007)Google Scholar
  25. [25]
    K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, Trans. Nonferrous. Met. Soc. China 18, 12 (2008)CrossRefGoogle Scholar
  26. [26]
    X.M. Zhang, Z.Y. Mu, Y.L. Deng, C.P. Tang, L.Q. Guan, J. Sci. Technol. 44, 2223 (2013)Google Scholar
  27. [27]
    J. Zhao, J.P. Li, Y.C. Guo, Z. Yang, Y.M. Yang, M.X. Liang, Rare Met. Mater. Eng. 37, 281 (2008)Google Scholar
  28. [28]
    L.Y. Wang, J. Huang, J. Dong, K. Feng, Y.X. Wu, P.K. Chu, Mater. Charact. 118, 486 (2016)CrossRefGoogle Scholar
  29. [29]
    T. Honma, T. Ohkubo, K. Hono, S. Kamado, Mater. Sci. Eng., A 395, 301 (2005)CrossRefGoogle Scholar
  30. [30]
    C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Acta Mater. 51, 5335 (2003)CrossRefGoogle Scholar
  31. [31]
    J.X. Zheng, X.S. Xu, K.Y. Zhang, B. Chen, Mater. Lett. 152, 287 (2015)CrossRefGoogle Scholar
  32. [32]
    S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, J. Alloys Compd. 421, 309 (2006)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuang Yu
    • 1
    • 3
  • Rui-Ling Jia
    • 1
  • Tao Zhang
    • 2
  • Fu-Hui Wang
    • 2
  • Jian Hou
    • 3
  • Hui-Xia Zhang
    • 3
  1. 1.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina
  2. 2.School of Materials Science and EngineeringNortheast UniversityShenyangChina
  3. 3.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research Institute (LSMRI)QingdaoChina

Personalised recommendations