Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 10, pp 1089–1097 | Cite as

Influence of Cryorolling on the Precipitation of Cu–Ni–Si Alloys: An In Situ X-ray Diffraction Study

  • Wei Wang
  • Zong-Ning Chen
  • En-Yu Guo
  • Hui-Jun KangEmail author
  • Yi Liu
  • Cun-Lei Zou
  • Ren-Geng Li
  • Guo-Mao Yin
  • Tong-Min Wang


The effect of cryorolling on the precipitation process of deformed Cu–Ni–Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu–Ni–Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.


Copper alloy Cryogenic Rolling Aging precipitation Synchrotron radiation X-ray diffraction 



The authors gratefully acknowledge the supports of National Key Research and Development Program of China (No. 2017YFA0403803), the National Natural Science Foundation of China (Nos. 51525401, 51774065, 51690163 and 51601028), the Dalian Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013). The authors thank SSRF for providing the beamtime and all the staff members of the beamline BL14B1 for technical supports during experiments.


  1. [1]
    J. Chen, X.G. Ma, W. Yan, F. Xia, X.H. Fan, J. Mater. Sci. Technol. 30, 184 (2014)CrossRefGoogle Scholar
  2. [2]
    Y. Zhang, Y.S. Li, N.R. Tao, K. Lu, Appl. Phys. Lett. 91, 282 (2007)Google Scholar
  3. [3]
    Z. Sun, C. Laitem, A. Vincent, Mater. Sci. Eng. A 477, 145 (2008)CrossRefGoogle Scholar
  4. [4]
    J. Hu, C.F. Dong, X.G. Li, K. Xiao, J. Mater. Sci. Technol. 26, 355 (2010)CrossRefGoogle Scholar
  5. [5]
    S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, Y. Waseda, Scr. Mater. 48, 431 (2003)CrossRefGoogle Scholar
  6. [6]
    Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 29, 422 (2016)CrossRefGoogle Scholar
  7. [7]
    M.C. Somani, L.P. Karjalainen, Acta Metall. Sin. (Engl. Lett.) 17, 111 (2004)Google Scholar
  8. [8]
    Q. Lei, Z. Li, Y. Gao, X. Peng, B. Derby, J. Alloys Compd. 695, 2413 (2017)CrossRefGoogle Scholar
  9. [9]
    Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, Z. Xiao, Intermetallics 42, 77 (2013)CrossRefGoogle Scholar
  10. [10]
    F. Djavanroodi, A.A. Zolfaghari, M. Ebrahimi, K. Nikbin, Acta Metall. Sin. (Engl. Lett.) 27, 95 (2014)CrossRefGoogle Scholar
  11. [11]
    R. Monzen, Y. Takagawa, C. Watanabe, D. Terada, N. Tsuji, Proc. Eng. 10, 2417 (2011)CrossRefGoogle Scholar
  12. [12]
    A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.L. Helbert, M.H. Mathon, M. Kawasaki, D. Bradai, T.G. Langdon, J. Alloys Compd. 574, 361 (2013)CrossRefGoogle Scholar
  13. [13]
    S.M. Dasharath, S. Mula, Mater. Sci. Eng. A 675, 403 (2016)CrossRefGoogle Scholar
  14. [14]
    Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature 419, 912 (2002)CrossRefGoogle Scholar
  15. [15]
    G. Anand, K. Barai, R. Madhavan, P.P. Chattopadhyay, Mater. Sci. Eng. A 638, 114 (2015)CrossRefGoogle Scholar
  16. [16]
    R.G. Li, H.J. Kang, Z.N. Chen, G.H. Fan, C.L. Zou, W. Wang, S.J. Zhang, Y.P. Lu, J.C. Jie, Z.Q. Cao, Sci. Rep. 6, 20799 (2016)CrossRefGoogle Scholar
  17. [17]
    T. Konkova, S. Mironov, A. Korznikov, G. Korznikova, M.M. Myshlyaev, S.L. Semiatin, J. Alloys Compd. 648, 858 (2015)CrossRefGoogle Scholar
  18. [18]
    S. Mula, S. Dasharath, Mater. Des. 99, 552 (2016)CrossRefGoogle Scholar
  19. [19]
    T.Y. Yang, W. Wen, G.Z. Yin, X.L. Li, M. Gao, Y.L. Gu, L. Li, Nucl. Sci. Techol. 26, 5 (2015)Google Scholar
  20. [20]
    A.P. Hammersley, Solid State Ferment. Bioreact. 8, 1 (1997)Google Scholar
  21. [21]
    C. Yu, B. Aoun, L.S. Cui, Y.N. Liu, H. Yang, X.H. Jiang, S. Cai, D.Q. Jiang, Z.P. Liu, D.E. Brown, Y. Ren, Acta Mater. 115, 35 (2016)CrossRefGoogle Scholar
  22. [22]
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  23. [23]
    C.L. Zou, H.J. Kang, W. Wang, Z.N. Chen, R.G. Li, X.X. Gao, T.J. Li, T.M. Wang, J. Alloys Compd. 687, 312 (2016)CrossRefGoogle Scholar
  24. [24]
    Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 56, 2429 (2008)CrossRefGoogle Scholar
  25. [25]
    T. Konkova, S. Mironov, A. Korznikov, M.M. Myshlyaev, S.L. Semiatin, Mater. Sci. Eng. A 585, 178 (2013)CrossRefGoogle Scholar
  26. [26]
    P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, B. Yin, H.C. Gu, Acta Metall. Sin. (Engl. Lett.) 12, 273 (1999)Google Scholar
  27. [27]
    H.S. Zurob, C.R. Hutchinson, Y. Brechet, G. Purdy, Acta Mater. 50, 3077 (2002)CrossRefGoogle Scholar
  28. [28]
    B. Dutta, C.M. Sellars, Mater. Sci. Technol. 3, 197 (1987)CrossRefGoogle Scholar
  29. [29]
    T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, C.L. Wu, Acta Mater. 61, 1210 (2013)CrossRefGoogle Scholar
  30. [30]
    H.S. Zurob, Y. Brechet, G. Purdy, Acta Mater. 49, 4183 (2001)CrossRefGoogle Scholar
  31. [31]
    K.C. Russell, Adv. Colloid Interface Sci. 13, 205 (1980)CrossRefGoogle Scholar
  32. [32]
    G. Sundar, J.J. Hoyt, J. Phys. Condens. Matter 4, 4359 (1992)CrossRefGoogle Scholar
  33. [33]
    J. Huang, M. Meyer, V. Pontikis, Phys. Rev. Lett. 63, 628 (1989)CrossRefGoogle Scholar
  34. [34]
    J.J. Hoyt, Acta Metall. Mater. 39, 2091 (1991)CrossRefGoogle Scholar
  35. [35]
    F. Findik, J. Mater. Sci. Lett. 17, 79 (1998)CrossRefGoogle Scholar
  36. [36]
    F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 20, 95 (2007)CrossRefGoogle Scholar
  37. [37]
    J.D. Robson, Acta Mater. 61, 7781 (2013)CrossRefGoogle Scholar
  38. [38]
    Y.C. Tang, Y.L. Kang, L.J. Yue, X.L. Jiao, Acta Metall. Sin. (Engl. Lett.) 28, 307 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Wang
    • 1
  • Zong-Ning Chen
    • 1
  • En-Yu Guo
    • 1
  • Hui-Jun Kang
    • 1
    Email author
  • Yi Liu
    • 2
  • Cun-Lei Zou
    • 1
  • Ren-Geng Li
    • 1
  • Guo-Mao Yin
    • 1
  • Tong-Min Wang
    • 1
  1. 1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations