Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 169–177 | Cite as

Fabrication of Al-Coated Mg–Li Alloy Sheet and Investigation of Its Properties

  • Tian-Long ZhangEmail author
  • Toko Tokunaga
  • Munekazu Ohno
  • Mi-Lin Zhang
  • Kiyotaka Matsuura


An Al-coated Mg-8 mass% Li alloy rectangular bar was fabricated by hot extrusion, and then, it was hot-rolled into a thin sheet. The Al coating was uniform in thickness and had good bonding with the substrate during all the processing. This Al-coated Mg–Li alloy exhibited a good corrosion resistance in a 0.5 mass% HCl aqueous solution. No intermetallic compound was observed at the Al/Mg–Li interface after the extrusion and the rolling. The Al-coated Mg–Li alloy sheet exhibited an elongation to fracture of 35% at room temperature at a strain rate of 0.001 s−1 without any debonding between the coating and the substrate. When tensile tested at 573 K at 0.001 s−1 in the air, the Al coating remained undamaged even until an elongation of about 150%. Further elongation generated cracks on the coating and the specimen fractured at an elongation of about 200%. In an Ar atmosphere, the specimen exhibited a fracture elongation of over 400% under the same conditions at 573 K at 0.001 s−1, although a large number of cracks generated on the Al coating.


Mg–Li alloy Composite material Coating Mechanical properties Superplasticity 



This work was partly supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


  1. [1]
    T.M. Pollock, Science 328, 986 (2010)CrossRefGoogle Scholar
  2. [2]
    R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 2, 65 (2015)CrossRefGoogle Scholar
  3. [3]
    W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14, 1229 (2015)CrossRefGoogle Scholar
  4. [4]
    A.A. Nayeb-Hashemi, J.B. Clark, A.D. Pelton, Bull. Alloys Ph. Diagr. 5, 365 (1984)CrossRefGoogle Scholar
  5. [5]
    T.T. Yin, R.Z. Wu, Z. Leng, G.J. Du, X.Y. Guo, M.L. Zhang, J.H. Zhang, Surf. Coat. Technol. 225, 119 (2013)CrossRefGoogle Scholar
  6. [6]
    Y. Zou, Z.W. Zhang, S.Y. Liu, D. Chen, G.X. Wang, Y.Y. Wang, M.L. Zhang, Y.H. Chen, J. Electrochem. Soc. 162, 64 (2015)CrossRefGoogle Scholar
  7. [7]
    G.X. Wang, M.L. Zhang, R.Z. Wu, Appl. Surf. Sci. 258, 2648 (2012)CrossRefGoogle Scholar
  8. [8]
    J.F. Li, Z.Q. Zheng, S.C. Li, W.D. Ren, Z. Zhang, Mater. Sci. Eng., A 433, 233 (2006)CrossRefGoogle Scholar
  9. [9]
    L.L. Gao, C.H. Zhang, M.L. Zhang, X.M. Huang, X. Jiang, J. Alloys Compd. 458, 789 (2009)CrossRefGoogle Scholar
  10. [10]
    J.E. Gray, B. Luan, J. Alloys Compd. 336, 88 (2002)CrossRefGoogle Scholar
  11. [11]
    H. Matsumoto, S. Watanabe, S. Hanada, J. Mater. Process. Technol. 169, 9 (2005)CrossRefGoogle Scholar
  12. [12]
    T. Tokunaga, K. Matsuura, M. Ohno, Mater. Trans. 53, 1134 (2012)Google Scholar
  13. [13]
    H.P. Zhang, J.L. Yang, R.Z. Wu, T.Z. Wang, X.D. Dong, L.G. Hou, M.L. Zhang, S. Betsoten, B. Krit, Adv. Eng. Mater. 18, 1792 (2016)CrossRefGoogle Scholar
  14. [14]
    H.P. Yang, M.W. Fu, S. Tob, G.C. Wang, Mater. Des. 112, 151 (2016)CrossRefGoogle Scholar
  15. [15]
    X.H. Liu, G.J. Du, R.Z. Wu, Z.Y. Niu, M.L. Zhang, J. Alloys Compd. 509, 9558 (2011)CrossRefGoogle Scholar
  16. [16]
    F.R. Cao, J.Z. Cui, J.L. Wen, F. Lei, J. Mater. Sci. Technol. 16, 55 (2000)CrossRefGoogle Scholar
  17. [17]
    O.D. Sherby, J. Wadsworth, Prog. Mater Sci. 33, 169 (1989)CrossRefGoogle Scholar
  18. [18]
    A.J. Barnes, J. Mater. Eng. Perform. 16, 440 (2007)CrossRefGoogle Scholar
  19. [19]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  20. [20]
    T. Tokunaga, K. Matsuura, M. Ohno, J. Alloys Compd. 601, 179 (2014)CrossRefGoogle Scholar
  21. [21]
    T.C. Xu, X.D. Peng, J. Qin, Y.F. Chen, Y. Yang, G.B. Wei, J. Alloys Compd. 639, 79 (2015)CrossRefGoogle Scholar
  22. [22]
    F.R. Cao, F. Xia, G.Q. Xue, Mater. Des. 92, 44 (2016)CrossRefGoogle Scholar
  23. [23]
    N. Chandra, Int. J. Non Linear Mech. 37, 461 (2002)CrossRefGoogle Scholar
  24. [24]
    P. Griffiths, C. Hammond, Scr. Met. 7, 793 (1973)CrossRefGoogle Scholar
  25. [25]
    A.B. Ma, Y. Nishida, N. Saito, I. Shigematsu, S.W. Lim, Mater. Sci. Technol. 19, 1642 (2003)CrossRefGoogle Scholar
  26. [26]
    X.H. Liu, H.B. Zhan, S.H. Gu, Z.K. Qu, R.Z. Wu, M.L. Zhang, Mater. Sci. Eng., A 528, 6157 (2011)CrossRefGoogle Scholar
  27. [27]
    N. Eswara Prasad, G. Malakondaiah, Bull. Mater. Sci. 15, 297 (1992)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tian-Long Zhang
    • 1
    Email author
  • Toko Tokunaga
    • 2
  • Munekazu Ohno
    • 2
  • Mi-Lin Zhang
    • 3
  • Kiyotaka Matsuura
    • 2
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Faculty of EngineeringHokkaido UniversitySapporoJapan
  3. 3.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations