Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 127–135 | Cite as

Cracking Behavior in Additively Manufactured Pure Tungsten

  • Dian-Zheng Wang
  • Kai-Lun Li
  • Chen-Fan Yu
  • Jing Ma
  • Wei LiuEmail author
  • Zhi-Jian ShenEmail author
Article
  • 112 Downloads

Abstract

In this study, near fully dense (96.5%) pure tungsten bulks were additively manufactured and the cracking behavior was investigated. A crack network with a spacing of ~ 100 μm was observed in the fabricated bulks. It was observed that the laser scanning strategy, which could tailor the microstructure, affected the crack distribution pattern in fabricated tungsten. The calculated surface temperature difference (7300 K) was much higher than the cracking criterion (800 K) of tungsten, indicating that cracking is almost inevitable in laser additive manufacturing of tungsten. It could be concluded that crack network formed because the cracks emerged in every laser molten track and then interconnected in the layer-by-layer building process.

Keywords

Tungsten Selective laser melting Cracking Microstructure 

Notes

Acknowledgements

This work was supported financially by the National Magnetic Confinement Fusion Science Program of China (No. 2014GB117000) and the National Natural Science Foundation of China (No. U1605243).

References

  1. [1]
    L. Huang, L. Jiang, T.D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, J.M. Schoenung, Acta Mater. 122, 19 (2017)CrossRefGoogle Scholar
  2. [2]
    R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A.S. Kukushkin, A. Loarte, M. Merola, A.S. Naik, R. Mitteau, M. Sugihara, B. Bazylev, P.C. Stangeby, J. Nucl. Mater. 438, S48 (2013)CrossRefGoogle Scholar
  3. [3]
    D.Q. Zhang, Q.Z. Cai, J.H. Liu, Mater. Manuf. Process. 27, 1267 (2012)CrossRefGoogle Scholar
  4. [4]
    X. Zhou, X.H. Liu, D.D. Zhang, Z.J. Shen, W. Liu, J. Mater. Process. Technol. 222, 33 (2015)CrossRefGoogle Scholar
  5. [5]
    K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, R. Van Holen, Med. Phys. 40, 1 (2013)CrossRefGoogle Scholar
  6. [6]
    Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, Z.J. Shen, J. Nucl. Mater. 470, 1708 (2016)Google Scholar
  7. [7]
    L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today (2018).  https://doi.org/10.1016/j.mattod.2017.11.004 Google Scholar
  8. [8]
    S. Lenders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard, H.J. Maier, Int. J. Fatigue 48, 300 (2013)CrossRefGoogle Scholar
  9. [9]
    L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016)CrossRefGoogle Scholar
  10. [10]
    K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Mater. 60, 2229 (2012)CrossRefGoogle Scholar
  11. [11]
    D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, Z. Shen, Appl. Sci. 7, 430 (2017)CrossRefGoogle Scholar
  12. [12]
    Y. Liu, Y.Q. Yang, D. Wang, Int. J. Adv. Manuf. Technol. 87, 647 (2016)CrossRefGoogle Scholar
  13. [13]
    B. Qian, K. Saeidi, L. Kvetkova, F. Lofaj, C. Xiao, Z. Shen, Dent. Mater. 31, 1435 (2015)CrossRefGoogle Scholar
  14. [14]
    X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, T.B. Sercombe, Mater. Sci. Eng. A 606, 370 (2014)CrossRefGoogle Scholar
  15. [15]
    N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94, 59 (2015)CrossRefGoogle Scholar
  16. [16]
    E. Chauvet, P. Kontis, E.A. Jagle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, Acta Mater. 142, 82 (2018)CrossRefGoogle Scholar
  17. [17]
    A. Huber, A. Arakcheev, G. Sergienko, I. Steudel, M. Wirtz, A.V. Burdakov, J.W. Coenen, A. Kreter, J. Linke, P. Mertens, V. Philipps, G. Pintsuk, M. Reinhart, U. Samm, A. Shoshin, B. Schweer, B. Unterberg, M. Zlobinski, Phys. Scr. T159, 014005 (2014)CrossRefGoogle Scholar
  18. [18]
    N. Farid, D. Zhao, H.Y. Oderji, H. Ding, J. Nucl. Mater. 463, 241 (2015)CrossRefGoogle Scholar
  19. [19]
    M. Wirtz, G. Cempura, J. Linke, G. Pintsuk, I. Uytdenhouwen, Fusion Eng. Des. 88, 1768 (2013)CrossRefGoogle Scholar
  20. [20]
    M. Wirtz, J. Linke, T. Loewenhoff, G. Pintsuk, I. Uytdenhouwen, Phys. Scr. T167, 014015 (2016)CrossRefGoogle Scholar
  21. [21]
    L.N. Carter, C. Martin, P.J. Withers, M.M. Attallah, J. Alloys Compd. 615, 338 (2014)CrossRefGoogle Scholar
  22. [22]
    D.Z. Wang, C.F. Yu, J. Ma, W. Liu, Z.J. Shen, Mater. Des. 129, 44 (2017)CrossRefGoogle Scholar
  23. [23]
    P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister, Science 282, 1293 (1998)CrossRefGoogle Scholar
  24. [24]
    L. Qi, D.C. Chrzan, Phys. Rev. Lett. 112, 11 (2014)CrossRefGoogle Scholar
  25. [25]
    L. Romaner, C. Ambrosch-Draxl, R. Pippan, Phys. Rev. Lett. 104, 195503 (2010)CrossRefGoogle Scholar
  26. [26]
    J.J. Xu, X. Lin, P.F. Guo, Y.L. Hu, X.L. Wen, L. Xue, J.R. Liu, W.D. Huang, Mater. Sci. Eng. A 691, 71 (2017)CrossRefGoogle Scholar
  27. [27]
    Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater. 113, 56 (2016)CrossRefGoogle Scholar
  28. [28]
    T. Hirai, G. Pintsuk, J. Linke, M. Batilliot, J. Nucl. Mater. 390–391, 751 (2009)CrossRefGoogle Scholar
  29. [29]
    C.F. Yu, X. Zhou, D.Z. Wang, N. Van Linh, W. Liu, Plasma Sci. Technol. 20, 014019 (2018)CrossRefGoogle Scholar
  30. [30]
    X. Zhou, D.Z. Wang, X.H. Liu, D.D. Zhang, S.L. Qu, J. Ma, G. London, Z.J. Shen, W. Liu, Acta Mater. 98, 1 (2015)CrossRefGoogle Scholar
  31. [31]
    I.M. Mikhailovskij, T.I. Mazilova, V.N. Voyevodin, A.A. Mazilov, Phys. Rev. B 83, 134115 (2011)CrossRefGoogle Scholar
  32. [32]
    C. Mercer, W.O. Soboyejo, Acta Mater. 45, 961 (1997)CrossRefGoogle Scholar
  33. [33]
    X. Zhou, K.L. Li, D.D. Zhang, X.H. Liu, J. Ma, W. Liu, Z.J. Shen, J. Alloys Compd. 631, 153 (2015)CrossRefGoogle Scholar
  34. [34]
    A.M. Chelladurai, K.A. Gopal, S. Murugan, S. Venugopal, T. Jayakumar, Mater. Manuf. Process. 30, 162 (2015)CrossRefGoogle Scholar
  35. [35]
    Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, J. Alloys Compd. 735, 1414 (2018)CrossRefGoogle Scholar
  36. [36]
    P. Mercelis, J.P. Kruth, Rapid Prototyping J. 12, 254 (2006)CrossRefGoogle Scholar
  37. [37]
    Y.L. Li, K. Zhou, P.F. Tan, S.B. Tor, C.K. Chua, K.F. Leong, Int. J. Mech. Sci. 136, 24 (2018)CrossRefGoogle Scholar
  38. [38]
    A.S. Arakcheev, A. Huber, M. Wirtz, G. Sergienko, I. Steudel, A.V. Burdakov, J.W. Coenen, A. Kreter, J. Linke, P. Mertens, A.A. Shoshin, B. Unterberg, A.A. Vasilyev, J. Nucl. Mater. 463, 246 (2015)CrossRefGoogle Scholar
  39. [39]
    K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, J.P. Kruth, J. Manuf. Sci. Eng. 136, 061026 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramic and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations