Crevice Corrosion Performance of 436 Ferritic Stainless Steel Studied by Different Electrochemical Techniques in Sodium Chloride Solutions with Sulfate Addition

  • Jia-Ming Wang
  • Sheng-Sheng Qian
  • Yuan-Yuan Liu
  • Yang-Ting Sun
  • Yi-Ming Jiang
  • Jin Li
Article
  • 2 Downloads

Abstract

The crevice corrosion behaviors of 436 stainless steels in chloride-containing solutions with sulfate addition were studied using potentiodynamic, galvanostatic and repassivation potential measurements. The results of these electrochemical tests were compared and discussed. Galvanostatic test was proved to be the most powerful technique in detecting the crevice corrosion of 436 stainless steels, while the repassivation potential measurement was the most time-saving method in this study. Sulfate ions have inhibited the crevice corrosion of 436 stainless steels in chloride-containing solution, which may result from the effects of competitive adsorption and the IR drop mechanism.

Keywords

Crevice corrosion Ferritic stainless steels Electrochemical techniques Sulfate ions Competitive adsorption IR drop mechanism 

Notes

Acknowledgements

The authors gratefully acknowledge Baosteel for providing specimens. This work is financially supported by the National Natural Science Foundation of China (Nos. 51501041 and 51671059).

References

  1. [1]
    J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 13 (1978)CrossRefGoogle Scholar
  2. [2]
    J.W. Oldfield, W.H. Sutton, Brit. Corros. J. 13, 104 (1978)CrossRefGoogle Scholar
  3. [3]
    H.W. Pickering, R.P. Frankenthal, J. Electrochem. Soc. 119, 1297 (1972)CrossRefGoogle Scholar
  4. [4]
    F. Bocher, R. Huang, J.R. Scully, Corrosion 66, 055002 (2010)CrossRefGoogle Scholar
  5. [5]
    J.R. Hayes, J.J. Gray, A.W. Szmodis, C.A. Orme, Corrosion 62, 491 (2006)CrossRefGoogle Scholar
  6. [6]
    B.A. Kehler, J.R. Scully, Corrosion 61, 665 (2005)CrossRefGoogle Scholar
  7. [7]
    B.A. Kehler, G.O. Ilevbare, J.R. Scully, Corrosion 57, 1042 (2001)CrossRefGoogle Scholar
  8. [8]
    F. Bocher, F. Presuel-Moreno, J.R. Scully, J. Electrochem. Soc. C 155, 256 (2008)CrossRefGoogle Scholar
  9. [9]
    X. He, B. Brettmann, H. Jung, Corrosion 65, 449 (2009)CrossRefGoogle Scholar
  10. [10]
    K.J. Evans, A. Yilmaz, S.D. Day, L.L. Wong, J.C. Estill, R.B. Rebak, JOM 57, 56 (2005)CrossRefGoogle Scholar
  11. [11]
    A.K. Mishra, G.S. Frankel, Corrosion 64, 836 (2008)CrossRefGoogle Scholar
  12. [12]
    G.O. Ilevbare, K.J. King, S.R. Gordon, H.A. Elayat, G.E. Gdowski, T. Gdowski, J. Electrochem. Soc. B 152, 547 (2005)CrossRefGoogle Scholar
  13. [13]
    D.D. Macdonald, A.C. Scott, P. Wentrcek, J. Electrochem. Soc. 126, 1618 (1979)CrossRefGoogle Scholar
  14. [14]
    A. Anderko, N. Sridhar, D.S. Dunn, Corros. Sci. 46, 1583 (2004)CrossRefGoogle Scholar
  15. [15]
    M. Rincón Ortiz, R.M. Carranza, M.A. Rodríguez, J. Phys: Conf. Ser. 786, 012034 (2017)Google Scholar
  16. [16]
    Y. Zuo, H. Du, J.P. Xiong, J. Mater. Sci. Technol. 16, 286 (2000)Google Scholar
  17. [17]
    Y. Zuo, H.T. Wang, J.M. Zhao, J.P. Xiong, Corros. Sci. 44, 13 (2002)CrossRefGoogle Scholar
  18. [18]
    Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 3481 (2010)CrossRefGoogle Scholar
  19. [19]
    Y.Y. Chen, L.B. Chou, H.C. Shih, Mater. Chem. Phys. 97, 37 (2006)CrossRefGoogle Scholar
  20. [20]
    L. Niu, K. Nakada, Corros. Sci. 96, 171 (2015)CrossRefGoogle Scholar
  21. [21]
    L. Niu, H. Kato, K. Shiokawa, K. Nakamura, M. Yamashita, Y. Sakai, Mater. Trans. 54, 2225 (2013)CrossRefGoogle Scholar
  22. [22]
    ASTM G48-03, Annual Book of ASTM Standards, vol. 03.05 (ASTM International, West Conshohocken, PA, 2005)Google Scholar
  23. [23]
    Z. Szklarska-Smialowska, J. Mankowski, Corros. Sci. 11, 953 (1978)CrossRefGoogle Scholar
  24. [24]
    M.A.M. Ibrahim, S.S. Abd El Rehim, M.M. Hamza, Mater. Chem. Phys. 115, 80 (2009)CrossRefGoogle Scholar
  25. [25]
    Q. Yang, J.L. Luo, Electrochim. Acta 46, 851 (2001)CrossRefGoogle Scholar
  26. [26]
    M.A. Ameer, A.M. Fekry, F.E. Heakal, Electrochim. Acta 50, 43 (2004)CrossRefGoogle Scholar
  27. [27]
    S.S. El-Egamy, W.A. Badaway, J. Appl. Electrochem. 34, 1153 (2004)CrossRefGoogle Scholar
  28. [28]
    E. Meguid, N.A. Mahmoud, S. Rehim, Mater. Chem. Phys. 63, 67 (2000)CrossRefGoogle Scholar
  29. [29]
    Q. Hu, G. Zhang, Y. Qiu, X. Guo, Corros. Sci. 53, 4065 (2011)CrossRefGoogle Scholar
  30. [30]
    T. Aoyama, Y. Sugawara, I. Muto, N. Hara, Corros. Sci. 127, 131 (2017)CrossRefGoogle Scholar
  31. [31]
    C.S. Brossia, R.G. Kelly, Corrosion 54, 145 (1998)CrossRefGoogle Scholar
  32. [32]
    T. Aoyama, Y. Sugawara, I. Muto, N. Hara, Corros. Sci. 127, 131 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia-Ming Wang
    • 1
  • Sheng-Sheng Qian
    • 1
  • Yuan-Yuan Liu
    • 1
  • Yang-Ting Sun
    • 1
  • Yi-Ming Jiang
    • 1
  • Jin Li
    • 1
  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations