Microstructural Evolution, Mechanical Properties and Thermal Stability of Gradient Structured Pure Nickel

  • Xiao Li
  • Bo Guan
  • Yun-Fei JiaEmail author
  • Yun-Chang Xin
  • Cheng-Cheng Zhang
  • Xian-Cheng ZhangEmail author
  • Shan-Tung Tu


The microstructural evolution of pure nickel treated by deep rolling (DR) technique with different indent depths was investigated by means of optical microscopy and transmission electron microscopy. The surface roughness, hardness and residual stress distribution along the depth from surface were measured. Moreover, the DR-treated sample was annealed at temperatures from 300 to 700 °C for 2 h. The results reveal that dislocation movements are the fundamental mechanisms of gradient grain refinement during the DR process. With increasing indent depth of the DR, the gradient microhardness on the cross section of sample significantly increases, the maximum compressive residual stress decreases, and the affecting region of residual stress increases. The results of thermal stability depict that the microstructure can be stable as temperature up to 300 °C, and the abnormal grain growth and annealing twins are observed at 600 °C.


Deep rolling Pure nickel Microstructural evolution Mechanical properties Thermal stability 



The authors would like to acknowledge gratefully for the financial support through the National Natural Science Foundation of China (Nos. 51725503, 51605164 and 51575183) and 111 Project. X.C. Zhang is also grateful for the support by Shanghai Technology Innovation Program of SHEITC (CXY-2015-001), Fok Ying Tung Education Foundation and Young Program of Yangtze River Scholars. Y.F. Jia is also grateful for the support by Shanghai Sailing Program (16YF1402300) and Shanghai Chenguang Program (16CG34).


  1. [1]
    M. Dadashpour, R. Yeşildal, A. Mostafapour, V. Rezazade, J. Mech. Sci. Technol. 30, 667 (2016)CrossRefGoogle Scholar
  2. [2]
    H. Hamadache, Z. Zemouri, L. Laouar, S. Dominiak, J. Mech. Sci. Technol. 28, 1491 (2014)CrossRefGoogle Scholar
  3. [3]
    B.N. Mordyuk, O.P. Karasevskaya, G.I. Prokopenko, N.I. Khripta, Surf. Coat. Technol. 210, 54 (2012)CrossRefGoogle Scholar
  4. [4]
    J. Walker, D.J. Thomas, Y. Gao, J. Manuf. Process. 26, 419 (2017)CrossRefGoogle Scholar
  5. [5]
    S. Bagherifard, R. Ghelichi, M. Guagliano, Appl. Surf. Sci. 258, 6831 (2012)CrossRefGoogle Scholar
  6. [6]
    J. Muñoz-Cubillos, J.J. Coronado, S.A. Rodríguez, Int. J. Fatigue 95, 120 (2017)CrossRefGoogle Scholar
  7. [7]
    I. Altenberger, in 9th International Conference on Shot Peening, Paris (2005), p. 144Google Scholar
  8. [8]
    A. Pimpin, I. Charoenbunyarit, W. Srituravanich, Sens. Actuators A Phys. 253, 49 (2017)CrossRefGoogle Scholar
  9. [9]
    X.Y. Zhong, X.Q. Wu, E.H. Han, X.B. Song, Eng. Fail. Anal. 17, 1404 (2010)CrossRefGoogle Scholar
  10. [10]
    C. Harris, M. Despa, K. Kelly, J. Microelectromech. Syst. 9, 502 (2000)CrossRefGoogle Scholar
  11. [11]
    G. Palumbo, F. Gonzalez, A.M. Brennenstuhl, U. Erb, W. Shmayda, P.C. Lichtenberger, Nanostruct. Mater. 9, 737 (1997)CrossRefGoogle Scholar
  12. [12]
    Z.P. Luo, H.W. Zhang, N. Hansen, K. Lu, Acta Mater. 60, 1322 (2012)CrossRefGoogle Scholar
  13. [13]
    A. Zhilyaev, S. Lee, G.V. Nurislamova, R. Valiev, T.G. Langdon, Scr. Mater. 44, 2753 (2001)CrossRefGoogle Scholar
  14. [14]
    A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, T.G. Langdon, Scr. Mater. 46, 575 (2002)CrossRefGoogle Scholar
  15. [15]
    X.C. Liu, H.W. Zhang, K. Lu, Science 342, 337 (2013)CrossRefGoogle Scholar
  16. [16]
    K.S. Fong, A. Danno, M.J. Tan, B.W. Chua, J. Mater. Process. Technol. 246, 235 (2017)CrossRefGoogle Scholar
  17. [17]
    N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47, 893 (2002)CrossRefGoogle Scholar
  18. [18]
    R.Z. Valiev, Mater. Sci. Eng. A 234–236, 59 (1997)CrossRefGoogle Scholar
  19. [19]
    X.C. Liu, H.W. Zhang, K. Lu, Scr. Mater. 95, 54 (2015)CrossRefGoogle Scholar
  20. [20]
    V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Mater. Sci. Eng. A 528, 1491 (2011)CrossRefGoogle Scholar
  21. [21]
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1, 45 (2002)CrossRefGoogle Scholar
  22. [22]
    N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50, 4603 (2002)CrossRefGoogle Scholar
  23. [23]
    M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu, Appl. Surf. Sci. 255, 6097 (2009)CrossRefGoogle Scholar
  24. [24]
    B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. 40, 205 (1992)CrossRefGoogle Scholar
  25. [25]
    N.P. Gurao, R. Kapoor, S. Suwas, Metall. Mater. Trans. A 41, 2794 (2010)CrossRefGoogle Scholar
  26. [26]
    W. Ting, W. Dongpo, L. Gang, G. Baoming, S. Ningxia, Appl. Surf. Sci. 255, 1824 (2008)CrossRefGoogle Scholar
  27. [27]
    V. Schulze, Modern Mechanical Surface Treatment: States, Stability, Effects (Wiley, Hoboken, 2003)Google Scholar
  28. [28]
    L. Tan, D. Zhang, C. Yao, D. Wu, J. Zhang, J. Manuf. Process. 26, 155 (2017)CrossRefGoogle Scholar
  29. [29]
    L. Lu, N.R. Tao, L.B. Wang, B.Z. Ding, K. Lu, J. Appl. Phys. 89, 6408 (2001)CrossRefGoogle Scholar
  30. [30]
    H. Chang, I. Baker, Mater. Sci. Eng. A 476, 46 (2008)CrossRefGoogle Scholar
  31. [31]
    P. Zháňal, K. Václavová, B. Hadzima, Mater. Sci. Eng. A 651, 886 (2016)CrossRefGoogle Scholar
  32. [32]
    E. Schafler, R. Pippan, Mater. Sci. Eng. A 387–389, 799 (2004)CrossRefGoogle Scholar
  33. [33]
    J. Victoria-Hernández, J. Suh, S. Yi, J. Bohlen, W. Volk, D. Letzig, Mater. Charact. 113, 98 (2016)CrossRefGoogle Scholar
  34. [34]
    X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, Q. Liu, Mater. Sci. Eng. A 622, 108 (2015)CrossRefGoogle Scholar
  35. [35]
    P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Acta Mater. 57, 2166 (2009)CrossRefGoogle Scholar
  36. [36]
    S. Zaefferer, T. Baudin, R. Penelle, Acta Mater. 49, 1105 (2001)CrossRefGoogle Scholar
  37. [37]
    Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Mater. Sci. Eng. A 597, 295 (2014)CrossRefGoogle Scholar
  38. [38]
    V.V. Popov, E.N. Popova, D.D. Kuznetsov, Mater. Sci. Eng. A 585, 281 (2013)CrossRefGoogle Scholar
  39. [39]
    K. Sitarama Raju, M. Ghanashyam Krishna, K.A. Padmanabhan, V. Subramanya Sarma, N.P. Gurao, G. Wilde, J. Mater. Sci. 46, 2662 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao Li
    • 1
  • Bo Guan
    • 2
  • Yun-Fei Jia
    • 1
    Email author
  • Yun-Chang Xin
    • 2
  • Cheng-Cheng Zhang
    • 3
  • Xian-Cheng Zhang
    • 1
    Email author
  • Shan-Tung Tu
    • 1
  1. 1.Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Materials Science and EngineeringChongqing UniversityChongqingChina
  3. 3.AECC Commercial Aircraft Engine Co. LTDShanghai Engineering Research Center for Commercial Aircraft EngineShanghaiChina

Personalised recommendations