Advertisement

Effects of Post-weld Heat Treatment on Microstructure, Mechanical Properties and the Role of Weld Reinforcement in 2219 Aluminum Alloy TIG-Welded Joints

  • Deng-Kui Zhang
  • Guo-Qing WangEmail author
  • Ai-Ping WuEmail author
  • Ji-Guo Shan
  • Yue Zhao
  • Tian-Yi Zhao
  • Dan-Yang Meng
  • Jian-Ling Song
  • Zhong-Ping Zhang
Article
  • 11 Downloads

Abstract

In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows different microstructure and microhardness due to the different welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing effect on the weld and their existence was more of an adverse effect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.

Keywords

2219 Aluminum alloy Tungsten inert gas arc welding Post-weld heat treatment Weld reinforcement Digital image correlation technique 

Notes

Acknowledgement

This work was supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1637601).

References

  1. [1]
    H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Mater. Charact. 135, 18 (2018)CrossRefGoogle Scholar
  2. [2]
    X.G. Zhang, L.Q. Li, Y.B. Chen, Z.J. Yang, Y.L. Chen, X.J. Guo, Materials 10, 1091 (2017)CrossRefGoogle Scholar
  3. [3]
    R.P. Naga, R.K. Srinivasa, G.M. Reddy, M. Kamaraj, R.K. Prasad, Mater. Sci. Eng. A 464, 192 (2007)CrossRefGoogle Scholar
  4. [4]
    V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak, Mater. Sci. Eng. A 502, 45 (2009)CrossRefGoogle Scholar
  5. [5]
    Y.T. Lin, M.C. Wang, Y. Zhang, Y.Z. He, D.P. Wang, Mater. Des. 113, 54 (2017)CrossRefGoogle Scholar
  6. [6]
    B.S. Nair, S. Rakesh, G. Phanikumar, K.P. Rao, P.P. Sinha, Mater. Des. 31, 4943 (2010)CrossRefGoogle Scholar
  7. [7]
    C.S. Paglia, R.G. Buchheit, Mater. Sci. Eng. A 429, 107 (2006)CrossRefGoogle Scholar
  8. [8]
    H.B. Chen, J.F. Wang, G.D. Zhen, S.B. Chen, T. Lin, Mater. Des. 86, 49 (2015)CrossRefGoogle Scholar
  9. [9]
    H.J. Liu, H.J. Zhang, L. Yu, Mater. Des. 32, 1548 (2011)CrossRefGoogle Scholar
  10. [10]
    A.C. Nunes, E.O. Bayless, C.S. Jones, P.M. Munafo, A.P. Biddle, W.A. Wilson, Weld. J. 63, 27 (1984)Google Scholar
  11. [11]
    Z.W. Lai, Z.Y. Huang, C. Pan, H.Q. Du, X.G. Chen, L. Liu, W.M. Long, G.S. Zou, Acta Metall. Sin. (Engl. Lett.) (2019).  https://doi.org/10.1007/s40195-018-0749-x Google Scholar
  12. [12]
    Z.Y. Feng, X.J. Di, S.P. Wu, D.P. Wang, X.Q. Liu, Acta Metall. Sin. (Engl. Lett.) 31, 263 (2018)CrossRefGoogle Scholar
  13. [13]
    L.Q. Niu, X.Y. Li, L. Zhang, X.B. Liang, M. Li, Acta Metall. Sin. (Engl. Lett.) 30, 438 (2017)CrossRefGoogle Scholar
  14. [14]
    C. Huang, F.F. Wang, D.Y. Yan, D.B. Liu, Z.G. Hu, Aerosp. Mater. Technol. 48, 56 (2018)Google Scholar
  15. [15]
    S. Malarvizhi, V. Balasubramanian, Weld. World 56, 105 (2012)CrossRefGoogle Scholar
  16. [16]
    B.Q. Cong, B.J. Qi, X.G. Zhou, J. Luo, Trans. China Weld. Inst. 31, 85 (2010)Google Scholar
  17. [17]
    G.Q. Wang, Q. Li, Y.J. Li, A.P. Wu, N.X. Ma, D.Y. Yan, H.Q. Wu, Trans. Nonferrous Met. Soc. China 27, 10 (2017)CrossRefGoogle Scholar
  18. [18]
    D.K. Zhang, Q. Li, Y. Zhao, X.L. Liu, J.L. Song, G.Q. Wang, A.P. Wu, J. Mater. Eng. Perform. 27, 2938 (2018)CrossRefGoogle Scholar
  19. [19]
    M.P. John, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 12, 269 (1981)CrossRefGoogle Scholar
  20. [20]
    H.M. Wang, Y.P. Yi, S.Q. Huang, J. Alloys Compd. 690, 446 (2017)CrossRefGoogle Scholar
  21. [21]
    Q. Li, A.P. Wu, Y.J. Li, G.Q. Wang, D.Y. Yan, J. Liu, Mater. Sci. Eng. A 623, 38 (2015)CrossRefGoogle Scholar
  22. [22]
    J.M. Papazian, Metall. Trans. A 12(2), 269 (1981)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Deng-Kui Zhang
    • 1
  • Guo-Qing Wang
    • 2
    Email author
  • Ai-Ping Wu
    • 1
    • 3
    • 4
    Email author
  • Ji-Guo Shan
    • 1
    • 4
  • Yue Zhao
    • 1
    • 4
  • Tian-Yi Zhao
    • 1
  • Dan-Yang Meng
    • 5
  • Jian-Ling Song
    • 5
  • Zhong-Ping Zhang
    • 5
  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.China Academy of Launch Vehicle TechnologyBeijingChina
  3. 3.State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  4. 4.Key Laboratory for Advanced Materials Processing Technology, Ministry of EducationTsinghua UniversityBeijingChina
  5. 5.Tianjin Long March Launch Vehicle Manufacturing Co., Ltd.TianjinChina

Personalised recommendations