Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1207–1218 | Cite as

Effect of Cooling Rates in Coiling Process on Microstructures and Mechanical Properties in Al-Bearing Hot-Rolled TRIP Steel

  • Xiao-Hui Wang
  • Jian Kang
  • Yun-Jie Li
  • Guo YuanEmail author
  • R. D. K. Misra
  • Guo-Dong Wang
Article
  • 95 Downloads

Abstract

In this study, the effect of cooling rates on microstructures and mechanical properties in a Al-bearing hot-rolled transformation-induced plasticity steel was investigated. The experiments were carried out using hot simulation machine and hot rolling mill, where the samples were cooled at different cooling rates. The results showed that with the increase in cooling rates, film-like retained austenite gradually disappeared and only blocky retained austenite was retained at higher cooling rates. The volume fraction of retained austenite was 9–11% at cooling rates of 0.05–1 °C/s and 4–6% at cooling rates of 5–10 °C/s. In addition, martensite/austenite island was observed because of the heterogeneous carbon distribution. The samples cooled at 0.05 °C/s and 0.5 °C/s exhibited excellent mechanical properties, with tensile strengths of 712 MPa and 726 MPa, total elongations of 42% and 36% and strength and ductility balances of 29.91 GPa% and 26.15 GPa%, respectively. During plastic deformation, the instantaneous work hardening exponent of the sample cooled at 0.05 °C/s increased continuously until it reached the maximum value, while the instantaneous work hardening exponent of the sample cooled at 0.5 °C/s remained stable.

Keywords

Hot-rolled TRIP steels Cooling rate Microstructures Mechanical properties Work hardening behavior 

Notes

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (No. 51504063). R.D.K. Misra also acknowledges for continued collaboration with Northeastern University as an honorary professor by providing guidance to students in research.

References

  1. [1]
    C. Wang, H. Ding, M. Cai, B. Rolfe, Mater. Sci. Eng. A 610, 65 (2014)CrossRefGoogle Scholar
  2. [2]
    M. De Meyer, B.C. De Cooman, D. Vanderschueren, Iron Steelmak. 27, 55 (2000)CrossRefGoogle Scholar
  3. [3]
    J. Mahieu, B.C. De Cooman, J. Maki, S. Claessens, Iron Steelmak. 29, 29 (2002)CrossRefGoogle Scholar
  4. [4]
    B. Mintz, Int. Mater. Rev. 46, 169 (2001)CrossRefGoogle Scholar
  5. [5]
    K. Zhu, C. Mager, M. Huang, J. Mater. Sci. Technol. 33, 12 (2017)Google Scholar
  6. [6]
    V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding, J. Mater. Sci. Technol. 34, 745 (2018)CrossRefGoogle Scholar
  7. [7]
    H.Q. Huang, H.S. Di, N. Yan, J.C. Zhang, Y.G. Deng, R.D.K. Misra, J.P. Li, Acta Metall. Sin. (Engl. Lett.) 31, 503 (2018)CrossRefGoogle Scholar
  8. [8]
    P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, F. Delannay, ISIJ Int. 41, 1068 (2001)CrossRefGoogle Scholar
  9. [9]
    D.W. Suh, S.J. Park, C.S. Oh, S.J. Kim, Scr. Mater. 57, 1097 (2007)CrossRefGoogle Scholar
  10. [10]
    J. Mahieu, B.C. De Cooman, J. Maki, Metall. Mater. Trans. A 33, 2573 (2002)CrossRefGoogle Scholar
  11. [11]
    Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, Mater. Sci. Eng. A 710, 181 (2018)CrossRefGoogle Scholar
  12. [12]
    J. Chiang, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 638, 132 (2015)CrossRefGoogle Scholar
  13. [13]
    J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011)CrossRefGoogle Scholar
  14. [14]
    A.Z. Hanzaki, R. Pandi, P.D. Hodgson, S. Yue, Metall. Mater. Trans. A 24, 2657 (1993)CrossRefGoogle Scholar
  15. [15]
    S.M.K. Hosseini, A.Z. Hanzaki, M.J.Y. Panah, Mater. Sci. Eng. A 374, 122 (2004)CrossRefGoogle Scholar
  16. [16]
    H.S. Wang, J. Kang, W.X. Dou, Y.X. Zhang, G. Yuan, G.M. Cao, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 702, 350 (2017)CrossRefGoogle Scholar
  17. [17]
    N.H.V. Dijk, A.M. But, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, Acta Mater. 53, 5439 (2005)CrossRefGoogle Scholar
  18. [18]
    D.J. Dyson, B. Holmes, ISIJ Int. 208, 469 (1970)Google Scholar
  19. [19]
    J.H. Hollomon, J. Member, Metall. Technol. 12, 268 (1945)Google Scholar
  20. [20]
    F.H. Akbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104, 72 (2016)CrossRefGoogle Scholar
  21. [21]
    Z.Q. Liu, G. Miyamoto, Z.G. Yang, T. Furuhara, Acta Mater. 61, 3120 (2013)CrossRefGoogle Scholar
  22. [22]
    X.C. Xiong, B. Chen, M.X. Huang, Scr. Mater. 68, 321 (2013)CrossRefGoogle Scholar
  23. [23]
    Y.J. Li, D. Chen, X.L. Li, Steel Res. Int. 88, 11 (2017)Google Scholar
  24. [24]
    C. Wang, X. Wu, J. Liu, N. Xu, Mater. Sci. Eng. A 438, 267 (2006)CrossRefGoogle Scholar
  25. [25]
    E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113, 124 (2016)CrossRefGoogle Scholar
  26. [26]
    G.A. Thomas, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42A, 3652 (2011)CrossRefGoogle Scholar
  27. [27]
    J. Zhao, W. Hu, X. Wang, J. Kang, G. Yuan, H. Di, R.D.K. Misra, Mater. Sci. Eng. A 666, 214 (2016)CrossRefGoogle Scholar
  28. [28]
    A. Mertens, E.M. Bellhouse, J.R. Mcdermid, Mater. Sci. Eng. A 608, 249 (2014)CrossRefGoogle Scholar
  29. [29]
    E.M. Bellhouse, J.R. Mcdermid, Metall. Mater. Trans. A 41, 1460 (2010)CrossRefGoogle Scholar
  30. [30]
    J.R. Mcdermid, H.S. Zurob, Y. Bian, Metall. Mater. Trans. A 42, 3627 (2011)CrossRefGoogle Scholar
  31. [31]
    E. Pereloma, H. Beladi, L. Zhang, I. Timokhina, Metall. Mater. Trans. A 43, 3958 (2012)CrossRefGoogle Scholar
  32. [32]
    L. Li, X. Zhang, W. Yang, Metall. Mater. Trans. A 44, 4337 (2013)CrossRefGoogle Scholar
  33. [33]
    D. De Knijf, T. Nguyen-minh, R.H. Petrov, L.A.I. Kestens, J.J. Jonas, J. Appl. Cryst. 47, 1261 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Hui Wang
    • 1
  • Jian Kang
    • 1
  • Yun-Jie Li
    • 1
  • Guo Yuan
    • 1
    Email author
  • R. D. K. Misra
    • 2
  • Guo-Dong Wang
    • 1
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Material and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations