Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 487–495 | Cite as

Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg–8Sn–4Zn–2Al Alloys

  • Yang Bai
  • Wei-Li Cheng
  • Shi-Chao Ma
  • Jun Zhang
  • Chen Guo
  • Yao Zhang


The Mg–8Sn–4Zn–2Al (TZA842, in wt%) alloys with different initial microstructure (as-cast-AC and homogenization treatment-HT) subjected to hot extrusion. Also, the strengthening responses to AC and HT for the extruded TZA842 alloys were reported. The results revealed that the alloy subjected to HT shows finer grain size, more homogenous microstructure and weaker basal texture than those of counterpart subjected to AC. In addition, compared with TZA842-AC alloy, precipitates were finer and uniformly dispersed in TZA842-HT owing to the utilization of HT. Moreover, the TZA842-HT alloy showed higher yield strength of 200 MPa, ultimate tensile strength of 290 MPa and elongation (EL) of 17.9% than those of TZA842-AC, which was mainly attributed to the combined effects of grain boundary strengthening, precipitation strengthening, solid solution strengthening and weak texture. Strengthening mechanism for both alloys was discussed in detail.


Mg–Sn alloy Extrusion Microstructure Tensile property Strengthening mechanism 



This study was financially supported by the National Natural Science Foundation of China (Grant No. 51404166), a Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2014-023), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2014017).


  1. [1]
    W.L. Cheng, S.S. Park, B.S. You, B.H. Koo, Mater. Sci. Eng. A 527, 4650 (2010)CrossRefGoogle Scholar
  2. [2]
    P. Cao, M.L. Zhang, W. Han, Y.D. Yan, L.J. Chen, Acta Metall. Sin. (Engl. Lett.) 25, 265 (2012)Google Scholar
  3. [3]
    W.L. Cheng, M. Wang, Z.P. Que, H.X. Wang, J.S. Zhang, C.X. Xu, B.S. You, C.D. Yim, J. Wuhan Univ. Technol. Mater Sci. Ed. 29, 804 (2014)Google Scholar
  4. [4]
    S. Behdad, L. Zhou, H.B. Henderson, M.V. Manuel, Y. Sohn, A. Agarwal, B. Boesl, Mater. Sci. Eng. A 651, 854 (2016)CrossRefGoogle Scholar
  5. [5]
    C.Q. Liu, H.W. Chen, J.F. Nie, Scr. Mater. 123, 5 (2016)CrossRefGoogle Scholar
  6. [6]
    W.L. Cheng, Y. Bai, L.F. Wang, H.X. Wang, L.P. Bian, H. Yu, Materials 10, 822 (2017)CrossRefGoogle Scholar
  7. [7]
    W.J. Li, K.K. Deng, X. Zhang, K.B. Nie, F.J. Xu, Mater. Sci. Eng. A 677, 367 (2016)CrossRefGoogle Scholar
  8. [8]
    K. Su, K.K. Deng, F.J. Xu, K.B. Nie, L. Zhang, X. Zhang, W.J. Li, Acta Metall. Sin. (Engl. Lett.) 28, 1015 (2015)CrossRefGoogle Scholar
  9. [9]
    S.-H. Kim, S.H. Park, Mater. Sci. Eng. A 676, 232 (2016)CrossRefGoogle Scholar
  10. [10]
    S.S. Park, Y.J. Kim, W.L. Cheng, Y.M. Kim, B.S. You, Philos. Mag. Lett. 91, 37 (2011)CrossRefGoogle Scholar
  11. [11]
    W.L. Cheng, L. Tian, H.X. Wang, L.P. Bian, H. Yu, Mater. Sci. Eng. A 687, 148 (2017)CrossRefGoogle Scholar
  12. [12]
    Q.S. Yang, B. Jiang, Z.J. Yu, Q.W. Dai, S.Q. Luo, Acta Metall. Sin. (Engl. Lett.) 28, 1257 (2015)CrossRefGoogle Scholar
  13. [13]
    S.J. Meng, H. Yu, H.X. Zhang, H.W. Cui, S.H. Park, W.M. Zhao, B.S. You, Mater. Sci. Eng. A 690, 80 (2017)CrossRefGoogle Scholar
  14. [14]
    C.P. Wang, H.S. Mei, R.Q. Li, D.F. Li, L. Wang, J. Liu, Z.H. Hua, L.J. Zhao, F.F. Pen, H. Li, Acta Metall. Sin. (Engl. Lett.) 26, 149 (2013)CrossRefGoogle Scholar
  15. [15]
    L.F. Wang, E. Mostaed, X.Q. Cao, G.S. Huang, A. Fabrizi, F. Bonollo, C.Z. Chi, M. Vedani, Mater. Des. 89, 1 (2016)CrossRefGoogle Scholar
  16. [16]
    J. Luo, H. Yan, N. Zheng, R.S. Chen, Acta Metall. Sin. (Engl. Lett.) 29, 205 (2016)CrossRefGoogle Scholar
  17. [17]
    N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, C. Li, D.Y. Li, D.L. Chen, J. Alloys Compd. 615, 424 (2014)CrossRefGoogle Scholar
  18. [18]
    W.N. Tang, S.S. Park, B.S. You, Mater. Des. 32, 3537 (2011)CrossRefGoogle Scholar
  19. [19]
    W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, B.S. You, J. Mater. Alloys 2, 299 (2014)CrossRefGoogle Scholar
  20. [20]
    H.Y. Chao, Y. Yang, X. Wang, E.D. Wang, Mater. Sci. Eng. A 528, 3428 (2011)CrossRefGoogle Scholar
  21. [21]
    W. Yuan, S.K. Panigrahi, J.-Q. Su, R.S. Mishra, Scr. Mater. 65, 994 (2011)CrossRefGoogle Scholar
  22. [22]
    B. Raeisinia, S.R. Agnew, A. Akhtar, Metall. Mater. Trans. A 42, 1418 (2011)CrossRefGoogle Scholar
  23. [23]
    Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, J. Meng, J. Alloys Compd. 665, 240 (2016)CrossRefGoogle Scholar
  24. [24]
    C.J. Wang, K.K. Deng, K.B. Nie, S.J. Shang, W. Liang, Mater. Sci. Eng. A 656, 102 (2016)CrossRefGoogle Scholar
  25. [25]
    Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, S. Kamado, Mater. Sci. Eng. A 682, 423 (2017)CrossRefGoogle Scholar
  26. [26]
    B.-C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.-S. Shim, N.J. Kima, Acta Mater. 124, 268 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yang Bai
    • 1
  • Wei-Li Cheng
    • 1
    • 2
    • 3
  • Shi-Chao Ma
    • 1
  • Jun Zhang
    • 1
  • Chen Guo
    • 1
  • Yao Zhang
    • 1
  1. 1.School of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina
  3. 3.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of EducationTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations