Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 465–470 | Cite as

Compositional Variants of Cu-rich Precipitate in Thermally Aged Ferritic Steel

  • Qingdong Liu
  • Yihua Chen
  • Chuanwei Li
  • Jianfeng Gu
Article
  • 71 Downloads

Abstract

Atom probe tomography was utilized to investigate Cu precipitation in a high-strength low-alloy steel isothermally aged at 500 °C for 1, 4, 16, and 64 h after water-quenching from 900 °C. With prolonged aging time, the Cu-rich precipitates (CRPs) increased in size and decreased in number density, and gradually evolved from spheroidal to elliptical in morphology. The small CRPs were rich in a high amount of Fe and a certain amount of Ni and Mn at their early nucleation stage. The large CRPs with increased size due to extensive aging contained less Fe and more Cu at their later growth stage. Additionally, Ni and Mn were both readily to segregate at the CRP/matrix heterophase interfaces, and Mn was higher in content than Ni in the precipitate interior especially when the CRPs were large in size.

Keywords

High-strength low-alloy steel Thermal aging Cu-rich precipitate Atom probe tomography 

Notes

Acknowledgements

One of the authors, Qingdong Liu, thanks to Mrs Qifeng Zeng at Shanghai Nuclear Engineering and Research & Design Institute, China, for her great support to this research.

References

  1. [1]
    E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montemarano, J.P. Gudas, Nav. Eng. J. 102, 63 (1990)CrossRefGoogle Scholar
  2. [2]
    S. Thompson, G. Krauss, Metall. Mater. Trans. A 27, 1573 (1996)CrossRefGoogle Scholar
  3. [3]
    S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39, 363 (2008)CrossRefGoogle Scholar
  4. [4]
    R.D.K. Misra, Z. Jia, R. O′Malley, S.J. Jansto. Mater. Sci. Eng. A 528, 8772 (2011)CrossRefGoogle Scholar
  5. [5]
    Z. Zhang, C. Liu, Y. Wen, A. Hirata, S. Guo, G. Chen, M. Chen, B. Chin, Metall. Mater. Trans. A 43, 351 (2012)CrossRefGoogle Scholar
  6. [6]
    R.P. Kolli, D.N. Seidman, in Heat Treatment of Copper Precipitation-Strengthened Steels, ASM Handbook, Volume 4D, Heat Treating of Irons and Steels, ed by J. Dossett, G.E. Totten (ASM International, Materials Park 2014), pp. 188Google Scholar
  7. [7]
    G.E. Lucas, J. Nucl. Mater. 407, 59 (2010)CrossRefGoogle Scholar
  8. [8]
    Reports: Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels, IAEA Nuclear Energy Series. No. NP-T-3.11. International Atomic Agency, Vienna, 2009Google Scholar
  9. [9]
    G.R. Odette, B.D. Wirth, D.J. Bacon, N.M. Ghoniem, MRS Bull. 26, 176 (2001)CrossRefGoogle Scholar
  10. [10]
    T. Takeuchi, A. Kuramoto, J. Kameda, T. Toyama, Y. Nagai, M. Hasegawa, T. Ohkubo, T. Yoshiie, Y. Nishiyama, K. Onizawa, J. Nucl. Mater. 402, 93 (2010)CrossRefGoogle Scholar
  11. [11]
    M.K. Miller, K.F. Russell, J. Nucl. Mater. 372, 145 (2007)CrossRefGoogle Scholar
  12. [12]
    G. Xu, L.L. Cai, L. Feng, B.X. Zhou, J.A. Wang, H.S. Zhang, Acta Metall. Sin. 48, 753 (2012). (in Chinese) CrossRefGoogle Scholar
  13. [13]
    Z. Lu, Acta Metall. Sin. 47, 777 (2011). (in Chinese) Google Scholar
  14. [14]
    D. Isheim, R.P. Kolli, M.E. Fine, D.N. Seidman, Scr. Mater. 55, 35 (2006)CrossRefGoogle Scholar
  15. [15]
    R.P. Kolli, D.N. Seidman, Microsc. Microanal. 13, 272 (2007)CrossRefGoogle Scholar
  16. [16]
    R.P. Kolli, Z. Mao, D.T. Keane, D.N. Seidman, Appl. Phys. Lett. 91, 241903 (2007)CrossRefGoogle Scholar
  17. [17]
    R.P. Kolli, D.N. Seidman, Acta Mater. 56, 2073 (2008)CrossRefGoogle Scholar
  18. [18]
    M.D. Mulholland, D.N. Seidman, Scr. Mater. 60, 992 (2009)CrossRefGoogle Scholar
  19. [19]
    M.D. Mulholland, D.N. Seidman, Acta Mater. 59, 1881 (2011)CrossRefGoogle Scholar
  20. [20]
    Z.W. Zhang, C.T. Liu, M.K. Miller, X. Wang, Y.R. Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, B.A. Chin, Sci. Rep. 3, 1327 (2013)CrossRefGoogle Scholar
  21. [21]
    R.P. Kolli, D.N. Seidman, Microsc. Microanal. 20, 1727 (2014)CrossRefGoogle Scholar
  22. [22]
    M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000), p. 26CrossRefGoogle Scholar
  23. [23]
    Q.D. Liu, J.F. Gu, W.Q. Liu. Metall. Mater. Trans. A 44, 4434 (2013)CrossRefGoogle Scholar
  24. [24]
    Q.D. Liu, S.J. Zhao, MRS Commun. 4, 127 (2012)CrossRefGoogle Scholar
  25. [25]
    B.L. Tiemens, A.K. Sachdev, R.K. Mishra, G.B. Olson, Metall. Mater. Trans. A 43, 3626 (2012)CrossRefGoogle Scholar
  26. [26]
    Q.D. Liu, W.Q. Liu, X.Y. Xiong, J. Mater. Res. 27, 1060 (2012)CrossRefGoogle Scholar
  27. [27]
    Q.D. Liu, S.J. Zhao, Metall. Mater. Trans. A 44, 163 (2013)CrossRefGoogle Scholar
  28. [28]
    R. Monzen, M. Iguchi, M.L. Jenkins, Philos. Mag. Lett. 80, 137 (2000)CrossRefGoogle Scholar
  29. [29]
    P.J. Othen, M.L. Jenkins, G.D.W. Smith, Philos. Mag. A 70, 1 (1994)CrossRefGoogle Scholar
  30. [30]
    R. Monzen, M.L. Jenkins, A.P. Sutton, Philos. Mag. 80, 711 (2000)CrossRefGoogle Scholar
  31. [31]
    G. Xu, D.F. Chu, L.L. Cai, B.X. Zhou, W. Wang, J.C. Peng, Acta Metall. Sin. 47, 905 (2011). (in Chinese) Google Scholar
  32. [32]
    R. Monzen, K. Takada, C. Watanabe, ISIJ Int. 44, 442 (2004)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qingdong Liu
    • 1
    • 2
    • 3
  • Yihua Chen
    • 1
  • Chuanwei Li
    • 1
  • Jianfeng Gu
    • 1
    • 2
  1. 1.Institute of Materials Modification and Modelling, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Scholl of Nuclear Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations