Advertisement

Vacuum brazing of TiAl-based alloy using Ti-Zr-Fe filler metal

  • Yong-Lai Shang
  • Hai-Shui Ren
  • Yong-Juan Jing
  • Hua-Ping XiongEmail author
  • Bo Chen
Research Paper

Abstract

A Ti-Zr-Fe brazing alloy was designed and fabricated into foils by rapid solidification technique for joining of TiAl-based alloy. The phase characteristics of typical joint interface microstructure were analyzed, and the influence of process parameters on the interfacial microstructure and mechanical properties was discussed. The results showed that the joint interface consists of Ti2Al, Ti3Al (Zr, Fe), Ti-based solid solution, and (Ti, Zr)2Fe phase enriched with 10.0~15.0 at.% Al. Under the brazing condition of 1283 K/10 min, the joints exhibited a shear strength of 221.3 MPa. The joint showed a brittle fracture and the fracture propagated through the entire brazing seam.

Keywords

TiAl-based alloy Ti-Zr-Fe filler metal Braze Microstructure Shear strength 

Notes

Funding information

This research work was sponsored by National Natural Science Foundation of China (Contract Nos. 51705489 and 51804286). We also would like to thank the Preliminary Research Project (Grant JCKY2016220C003).

References

  1. 1.
    Kim SW, Hong JK, Na YS, Yeom JT, Kim SE (2014) Development of TiAl alloys with excellent mechanical properties and oxidation resistance. Mater Des 54:814–819CrossRefGoogle Scholar
  2. 2.
    Arenas MF, Acoff VL (2003) Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding. Weld J 82(5):110-SGoogle Scholar
  3. 3.
    Chen GQ, Zhang BG, Liu W et al (2011) Crack formation and control upon the electron beam welding of TiAl-based alloys. Intermetallics 19:1857–1863CrossRefGoogle Scholar
  4. 4.
    Hou KN, Juhas MC, Baeslack III WA et al (1992) An electron microscopy study of inertia friction welds in Ti-48Al-2Cr-2Nb gamma titanium aluminide. Proc Int Conf on Trends in Welding Research, Gatlinburg, TN (May, 1992)Google Scholar
  5. 5.
    Uenishi K, Sumi H, Kobayashi KF (1995) Joining of the intermetallic compound TiAl using self-propagating high-temperature synthesis reaction. Z Met 86(1):64–68Google Scholar
  6. 6.
    Simões S, Ramos AS, Viana F et al (2017) TiAl diffusion bonding using Ni/Ti multilayers. Welding World 61(6):1267–1273CrossRefGoogle Scholar
  7. 7.
    Ye L, Xiong HP, Huai JF, Chen B (2015) Microstructures of the TiAl joints brazed with Ti-Zr-based filler metals. Welding World 59(2):201–208CrossRefGoogle Scholar
  8. 8.
    Acoff VL, Wilkerson S, Arenas M (2002) The effect of rolling direction on the weld structure and hardness of gamma-TiAl sheet material. Mater Sci Eng A 329:763–767CrossRefGoogle Scholar
  9. 9.
    Shiue RK, Wu SK, Chen SY (2003) Infrared brazing of TiAl using Al-based braze alloys. Intermetallics 11(7):661–671CrossRefGoogle Scholar
  10. 10.
    Guedes A, Pinto AMP, Vieira M, Viana F, Ramos AS, Vieira MT (2002) Microstructural characterisation of γ-TiAl joints. Key Eng Mater 230-232:27–30CrossRefGoogle Scholar
  11. 11.
    Shiue RK, Wu SK, Chen SY (2003) Infrared brazing of TiAl intermetallic using BAg-8 braze alloy. Acta Mater 51(7):1991–2004CrossRefGoogle Scholar
  12. 12.
    Wallis IC, Ubhi HS, Bacos MP, Josso P, Lindqvist J, Lundstrom D, Wisbey A (2004) Brazed joints in γ-TiAl sheet: microstructure and properties. Intermetallics 12:303–316CrossRefGoogle Scholar
  13. 13.
    Cai YS, Liu RC, Zhu ZW, Cui YY, Yang R (2017) Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal. Intermetallics 91:35–44CrossRefGoogle Scholar
  14. 14.
    Ren HS, Xiong HP, Chen B, Pang SJ (2015) Vacuum brazing TiAl to Ti3Al using two Ti-based filler metals. Welding World 59(5):639–646CrossRefGoogle Scholar
  15. 15.
    Wang X, Qi Y, Zhang YH et al (2006) Melting point and brazing microstructures of TiZrFe filler metal. Metal Funct Mater 13(1):27–30 in ChineseGoogle Scholar
  16. 16.
    Xiong HP, Shen Q, Li JG, Zhang LM, Yuan RZ (2000) Design and microstructures of Ti/TiAl/Al system functionally graded material. J Mater Sci Lett 19:989–993CrossRefGoogle Scholar
  17. 17.
    Cao GH, Skrotzki W, Gemming T (2006) Transmission electron microscopy investigation of Ti2Al precipitation in titanium aluminides during high-strain torsion. J Alloys Compd 417:169–172CrossRefGoogle Scholar
  18. 18.
    Massalski TB (1990) Binary alloy phase diagrams. Materials Park (OH), ASM InternationalGoogle Scholar
  19. 19.
    Li N, Huang S, Zhang GD et al (2019) Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 35(2):242-269Google Scholar
  20. 20.
    Shang YL, Ren HS, Xiong HP et al (2018) Research progress and trend on brazing technology of γ-TiAl alloy itself and with superalloy. Welding & Joining 12:12-20 in ChineseGoogle Scholar
  21. 21.
    Xiong HP, Mao JY, Chen BQ et al (2013) Research advances on the welding and joining technologies of light-mass high-temperature structural materials in aerospace field. J Mater Eng 10:1-12 in ChineseGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  • Yong-Lai Shang
    • 1
  • Hai-Shui Ren
    • 1
  • Yong-Juan Jing
    • 1
  • Hua-Ping Xiong
    • 1
    Email author
  • Bo Chen
    • 1
  1. 1.Welding and Plastic Forming DivisionBeijing Institute of Aeronautical MaterialsBeijingPeople’s Republic of China

Personalised recommendations