Investigation of diffusible hydrogen content in drawn arc stud weld metal

  • Oliver BrätzEmail author
  • Knuth-Michael Henkel
Research Paper


The fully mechanized drawn arc stud welding is a welding procedure for joining pin-shaped elements. In particular, it is an established joining technique for large studs in steel construction. The process is characterized by its high heat input due to high current and a weld pool protection realized by a ceramic ferrule holding the metal vapor as a shielding gas. Turbulences inside the ferrule during welding cause contaminations with atmospheric humidity. Furthermore, a high cooling rate results in a locally strongly hardened heat-affected zone and a considerable residual stress state in the parent material. Thus, there is a risk of enhanced hydrogen cracking susceptibility, especially for stud welding on high strength steels or under adverse welding conditions. An analysis procedure for determination of diffusible hydrogen content in drawn arc stud weld metal is presented in this article. This novel method is based on carrier gas hot extraction according to ISO 3690.


Stud welding Carrier gas hot extraction Diffusible hydrogen Experimental design 



This work was made within the IGF research project 19.210 BG “Optimierung des Tragverhaltens unter Wasser gefügter Bolzenschweißverbindungen großer Dimensionen für Reparatur- und Instandhaltungsmaßnahmen” of the Research Association on Welding and Allied Processes of the DVS and has been funded by the AiF within the program for sponsorship by Industrial Joint Research (IGF) of the German Federal Ministry of Economic Affairs and Energy on the basis of a decision of the German Bundestag.


  1. 1.
    Woodtli J, Kieselbach R (2000) Damage due to hydrogen embrittlement and stress corrosion cracking. Eng Fail Anal 7:427–450. CrossRefGoogle Scholar
  2. 2.
    EN 1011–2:2009–07 (2009) Welding – recommendations for welding of metallic materials – Part 2: Arc welding of ferritic steelsGoogle Scholar
  3. 3.
    Kannengiesser T, Boellinghaus T (2013) Cold cracking tests—an overview of present technologies and applications. Weld World 57:3–37. CrossRefGoogle Scholar
  4. 4.
    ISO 3690:2018–07 (2018) Welding and allied processes – determination of hydrogen content in arc weld metalGoogle Scholar
  5. 5.
    Trillmich R, Welz W (2014) Bolzenschweißen – Grundlagen und Anwendung. DVS Media GmbH, DüsseldorfGoogle Scholar
  6. 6.
    Hartz-Behrend K, Marqués JL, Forster G, Jenicek A, Müller M, Cramer H, Jilg A, Soyer H, Schein J (2014) Stud arc welding in a magnetic field – investigation of the influences on the arc motion. J Phys Conf Ser 550(012003):1–7Google Scholar
  7. 7.
    Nishi K (2008) The latest situation in stud welding from operational examples to standards. Weld Int 22(5):294–298. CrossRefGoogle Scholar
  8. 8.
    DVS 0902 (2000) Lichtbogenbolzenschweißen mit Hubzündung. DVS Media GmbH, DüsseldorfGoogle Scholar
  9. 9.
    Cramer H, Jenicek A (2011) Bewertung und Optimierung der Tragfähigkeit von Gewindebolzenschweißverbindungen unter Ermüdungsbeanspruchung. Research report. IGF 16.027Google Scholar
  10. 10.
    Padhy GK, Komizo Y (2013) Diffusible hydrogen in steel weldments. Trans JWRI 42(1):39–62Google Scholar
  11. 11.
    Robertson IM, Sofronis P, Nagao A et al (2015) Hydrogen embrittlement understood. Metallurg Mat Trans 46B:1085–1103. CrossRefGoogle Scholar
  12. 12.
    Evans GM, Weyland F (1984) Der diffusible Wasserstoff als Kriterium für die Qualität von Schweißzusätzen. special print from DVS-Berichte Band 50:1–13Google Scholar
  13. 13.
    Padhy GK, Ramasubbu V, Murugesan N, Remash C, Albert SK (2012) Effect of preheat and post-heating on diffusible hydrogen content of welds. Sci Technol Weld Join 17(5):408–413. CrossRefGoogle Scholar
  14. 14.
    Kannengiesser T, Tiersch N (2010) Measurements of diffusible hydrogen contents at elevated temperatures using different hot extraction techniques – an international round robin test. Weld World 54:R115–R122. CrossRefGoogle Scholar
  15. 15.
    Rohde M, Schaupp T, Muenster C, Mente T, Boellinghaus T, Kannengiesser T (2018) Hydrogen determination in welded specimens by carrier gas hot extraction – a review on the main parameters and their effect on hydrogen measurement. Weld World doi:
  16. 16.
    Nevasmaa P, Laukkanen A (2005) Assessment of hydrogen cracking risk in multipass weld metal of 2.25Cr-1Mo-0.25V-TiB (T24) boiler steel. Weld World 49(7/8):45–58. CrossRefGoogle Scholar
  17. 17.
    Zimmer P (2007) Zur Bewertung der Kaltrisssicherheit von Schweißverbindungen aus hochfesten Feinkornbaustählen. Dissertation. BAM BerlinGoogle Scholar
  18. 18.
    Cramer H, Böhme D, Jenicek A (2011) Causes of hydrogen embrittlement in the case of drawn-arc stud welding. Weld Mat Test 20(2):21–24Google Scholar
  19. 19.
    Jenicek A, Nentwig A, Welz W (1990) Untersuchungen zum Bolzenschweißen mit hochfesten Stählen. Research report. Studiengesellschaft Stahlanwendung e. V.. Projekt 168,Google Scholar
  20. 20.
    ISO 14555:2017–05 (2017): Welding – Arc stud welding of metallic materialsGoogle Scholar
  21. 21.
    ISO/DIS 3690 (2018) - Result and comment. IIW-Doc. II-E-760-18. Presented at: Intermediate Meeting of IIW Commission II-E, Genoa, ItalyGoogle Scholar
  22. 22.
    Harwig DD, Longenecker DP, Cruz JH (1999) Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas shielded flux cored arc welds. Weld J 78(9):314–321sGoogle Scholar
  23. 23.
    Kiefer JH (1996) Effects of moisture contamination and welding parameters on diffusible hydrogen. Weld J 75(5):155–161sGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  1. 1.Fraunhofer Research Institution for Large Structures in Production Engineering IGPRostockGermany
  2. 2.Chair of Joining TechnologyUniversity of RostockRostockGermany

Personalised recommendations