Application of different simulation approaches to numerically optimize high-frequency mechanical impact (HFMI) post-treatment process

  • Clément Ernould
  • Jan SchubnellEmail author
  • Majid Farajian
  • Andreas Maciolek
  • David Simunek
  • Martin Leitner
  • Michael Stoschka
Research Paper


The weld seam is generally the weak point of welded mechanical parts subject to fatigue loading. For this issue, a post-weld mechanical surface process called high-frequency mechanical impact (HFMI) was developed. This process combines both mechanical effects and a weld geometry improvement by generating compressive residual stresses and making a smoother transition between the base plate and the weld. Benefits of the process are statistically proven by numerous fatigue test results. Finite-element method (FEM) based numerical simulations of the process have been developed to estimate the material state after treatment. Good agreements with experimental results were obtained. Until present, rebounds of the pin between each primary impact have not been overlooked by such simulations. To discuss their eventual effects, signal of strain gauges glued on the pin was processed. A typical impact pattern of the pin kinetic during HFMI treatment could be identified and then implemented in a pre-existing FEM model. Numerical simulations were conducted using recently developed non-linear combined isotropic-kinematic hardening law with strain-rate dependency according to Chaboche und Ramaswamy–Stouffer models. These hardening laws were calibrated for S355 J2 mild steel. The simulation procedure was performed for flat specimen and representative butt weld joint.


Welding Fatigue strength improvement High-frequency mechanical impact (HFMI) treatment Finite-element simulation 



  1. 1.
    Statnikov E, Trufyakov VI, Mikheev PP, Kudryavtsev YF (1996) Specification for weld toe improvement by ultrasonic impact treatment, IIW, Paris, Doc. XIII-1617-96Google Scholar
  2. 2.
    Yildirim HC, Marquis GB, Barsoum Z (2013) Fatigue assessment of high frequency mechanical impact (HFMI)-improved fillet welds by local approaches. Int J Fatigue 52:57–67. CrossRefGoogle Scholar
  3. 3.
    Yildirim HC, Marquis GB (2012) Fatigue strength improvement factors for high strength steel welded joints treated by high frequency mechanical impact. Int J Fatigue 44:168–176. CrossRefGoogle Scholar
  4. 4.
    Marquis GB, Mikkola E, Yildirim HC, Barsoum Z (2013) Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines. Weld World 57:803–822. CrossRefGoogle Scholar
  5. 5.
    Marquis G, Barsoum Z (2014) Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed procedures and quality assurance guidelines. Weld World 58:19–28. CrossRefGoogle Scholar
  6. 6.
    Yildirim HC (2013) Design aspects of high strength steel welded structures improved by high frequency mechanical impact (HFMI) treatment. Doctoral Thesis, Aalto University. Department of Applied MechanicsGoogle Scholar
  7. 7.
    Yıldırım HC, Marquis GB (2014) Fatigue design of axially-loaded high frequency mechanical impact treated welds by the effective notch stress method. Mater Des 58:543–550. CrossRefGoogle Scholar
  8. 8.
    Haagensen PJ, Maddox SJ (2011) IIW recommendations on post weld fatigue life improvement of steel and aluminium structures. International Institute of Welding, ParisGoogle Scholar
  9. 9.
    Nüsse G (2011) REFRESH—Lebensdauerverlängerung bestehender und neuer geschweißter Stahlkonstruktionen / REFRESH—Extension of the fatigue life of existing and new welded steel structures. Verlag und Vertriebsgesellschaft GmbH, DüsseldorfGoogle Scholar
  10. 10.
    Le Quilliec G, Lieurade H-P, Bousseau M, Drissi-Habti M, Inglebert G (2011) Fatigue Behaviour of Welded Joints Treated by High Frequency Hammer Peening: Part I, Experimental Study. 64th Annual Assembly International Conference of the International Institute of Welding (IIW 2011), Jul 2011, Chennai, IndiaGoogle Scholar
  11. 11.
    Tehrani Yekta R, Ghahremani K, Walbridge S (2013) Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds. Int J Fatigue 55:245–256. CrossRefGoogle Scholar
  12. 12.
    Berg J, Stranghoener N (2014) Fatigue strength of welded ultra high strength steels improved by high frequency hammer peening. Procedia Mater Sci 3:71–76. CrossRefGoogle Scholar
  13. 13.
    Leitner M, Gerstbrein S, Ottersböck MJ, Stoschka M (2015) Fatigue strength of HFMI-treated high-strength steel joints under constant and variable amplitude block loading. Procedia Eng 101:251–258. CrossRefGoogle Scholar
  14. 14.
    Lefebvre F, Revilla-Gomez C, Buffière JY, Verdu C, Peyrac C (2014) Understanding the mechanisms responsible for the beneficial effect of hammer peening in welded structure under fatigue loading. Adv Mater Res 996:761–768CrossRefGoogle Scholar
  15. 15.
    Weich I (2008) Ermüdungsverhalten mechanisch nachbehandelter Schweißverbindungen in Abhängigkeit des Randschichtzustands / Fatigue behaviour of mechanical post weld treated welds depending on the edge layer condition / Technical University of Braunschweig. Doctoral ThesisGoogle Scholar
  16. 16.
    Hardenacke V, Farajian M, Siegele D (2014) Modelling and simulation of the high frequency mechanical impact (HFMI) treatment of welded joints. In: Proc. of 67th IIW Annual Assembly & International Conference 2014. International Institute of Welding, Paris, Frankreich XIII-2533-14 1-10Google Scholar
  17. 17.
    Le Quilliec G, Lieurade H-P, Bousseau M, Drissi-Habti M, Inglebert G (2011) Fatigue Behaviour of Welded Joints Treated by High Frequency Hammer Peening: Part II, Numerical study. 64th Annual Assembly International Conference of the International Institute of Welding (IIW 2011), Jul 2011, Chennai, IndiaGoogle Scholar
  18. 18.
    Baptista R, Infante V, Branco C (2011) Fully dynamic numerical simulation of the hammer peening fatigue life improvement technique. Procedia Eng 10:1943–1948. CrossRefGoogle Scholar
  19. 19.
    Simunek D, Leitner M, Stoschka M (2013) Numerical simulation loop to investigate the local fatigue behaviour of welded and HFMI-treated joints. IIW Doc WIII-WG2–136-13Google Scholar
  20. 20.
    Guo C, Hu S, Wang D, Wang Z (2015) Finite element analysis of the effect of the controlled parameters on plate forming induced by ultrasonic impact forming (UIF) process. Appl Surf Sci 353:382–390. CrossRefGoogle Scholar
  21. 21.
    Foehrenbach J, Hardenacke V, Farajian M (2016) High frequency mechanical impact treatment (HFMI) for the fatigue improvement: numerical and experimental investigations to describe the condition in the surface layer. Weld World 60:749–755. CrossRefGoogle Scholar
  22. 22.
    Foehrenbach J (2015) Fatigue life prediction of high frequency mechanical impact treated welded joints by numerical simulation and damage mechanic approaches. Master Thesis, Offenburg University of Applied ScienceGoogle Scholar
  23. 23.
    Quilliec GL, Lieurade H-P, Bousseau M et al (2013) Mechanics and modelling of high-frequency mechanical impact and its effect on fatigue. Weld World 57:97–111. CrossRefGoogle Scholar
  24. 24.
    Hu S, Guo C, Wang D, Wang Z-J (2016) 3D dynamic finite element analysis of the nonuniform residual stress in ultrasonic impact treatment process. J Mater Eng Perform 25:4004–4015. CrossRefGoogle Scholar
  25. 25.
    Khurshid M, Leitner M, Barsoum Z, Schneider C (2017) Residual stress state induced by high frequency mechanical impact treatment in different steel grades—numerical and experimental study. Int J Mech Sci 123:34–42. CrossRefGoogle Scholar
  26. 26.
    Yuan K, Sumi Y (2016) Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT). Int J Fatigue 92:321–332. CrossRefGoogle Scholar
  27. 27.
    Deng C, Liu Y, Gong B, Wang D (2016) Numerical implementation for fatigue assessment of butt joint improved by high frequency mechanical impact treatment: a structural hot spot stress approach. Int J Fatigue 92:211–219. CrossRefGoogle Scholar
  28. 28.
    Yang X, Zhou J, Ling X (2012) Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment. Mater Des 1980-2015 36:477–481. Google Scholar
  29. 29.
    Guo C, Wang Z, Wang D, Hu S (2015) Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models. Appl Surf Sci 347:596–601. CrossRefGoogle Scholar
  30. 30.
    Marquis GB, Barsoum Z (2016) IIW recommendations for the HFMI treatment: for improving the fatigue strength of welded joints. Springer, SingaporeCrossRefGoogle Scholar
  31. 31.
    Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2:149–188. CrossRefGoogle Scholar
  32. 32.
    Johnson GR, Cook WH (1983) A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings 7th International Symposium on Ballistics, The Hague, 19–21 April 1983, p 541–547Google Scholar
  33. 33.
    Ernould C (2017) Numerical simulation of pin kinetic and its influence on the material hardening, residual stress field and topography during high frequency mechanical impact (HFMI) treatment. Master Thesis, Karlsruhe Institute of TechnologyGoogle Scholar
  34. 34.
    Simunek D (2013) Implementierung der Schweißnahtnachbehandlung mittels eines hochfrequenten Hämmerverfahrens in die numerische Lebensdauerabschätzung. Master Thesis, Montanuniversität Leoben—Chair of Mechanical EngineeringGoogle Scholar
  35. 35.
    Ramaswamy GV (1985) A constitutive model for the inelastic multiaxial cyclic response of a nickel base superalloy Rene 80. Doctoral Thesis, University of Cincinnati—Department of aerospace engineering and engineering mechanicsGoogle Scholar
  36. 36.
    Maciolek A (2017) Implementierung eines elasto-viskoplastichen Materialmodells zur Simulation des Kugelstrahlens an Komponenten aus 42CrMoS4. Master Thesis, Karlsruhe Institute of TechnologyGoogle Scholar
  37. 37.
    Macherauch E, Wohlfahrt H (1985) Eigenspannungen und Ermüdung. In: Munz D (ed) Ermüdungsverhalten metallischer Werkstoffe. DGM Informationsgesellschaft GmbH, Oberursel, pp 237–283Google Scholar
  38. 38.
    Schulze V (2006) Modern mechanical surface treatment: states, stability, effects. Wiley-VCH, New YorkGoogle Scholar
  39. 39.
    International Organization for Standardization (2013) ISO 18265:2013-10 (EN), Metallic materials—conversion of hardness valuesGoogle Scholar
  40. 40.
    Muller M, Barrans SM, Blunt L (2011) Predicting plastic deformation and work hardening during V-band formation. J Mater Process Technol 211:627–636. CrossRefGoogle Scholar
  41. 41.
    Scholtes B, Vöhringer O (1989) Grundlagen der mechanischen Oberflächenbehandlung. In: Schütz W (ed) Mechanische Oberflächenbehandlung: Festwalzen-Kugelstrahlen-Sonderverfahren. DGM Informationsgesellschaft GmbH, Oberursel, pp 3–20Google Scholar
  42. 42.
    Schubnell J, Hardenacke V, Farajian M (2017) Strain-based critical plane approach to predict the fatigue life of high frequency mechanical impact (HFMI)-treated welded joints depending on the material condition. Weld World 61:1199–1210. CrossRefGoogle Scholar
  43. 43.
    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. CrossRefGoogle Scholar
  44. 44.
    Sakketiettibutra J, Loose T, Wohlfahrt H (2009) Zur Wahl des Verfestigungsmodells bei der Berechnung von Schweißeigenspannungen. Tagungsband, Weimar, pp 21–33Google Scholar
  45. 45.
    Bauschinger J (1886) Über die Veränderung der Elastizitätsgrenze und die Festigkeit des Eisens und Stahls durch Strecken und Quetschen, durch Erwärmen und Abkühlen und durch oftmals wiederholte Beanspruchungen. Mitteilungen des meachnisch-technischen Laboratoriums der Königlich Technichen Hochschule München, MunichGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  • Clément Ernould
    • 1
  • Jan Schubnell
    • 1
    Email author
  • Majid Farajian
    • 1
  • Andreas Maciolek
    • 1
  • David Simunek
    • 2
  • Martin Leitner
    • 2
  • Michael Stoschka
    • 2
  1. 1.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany
  2. 2.Montanuniversität Leoben – Chair of Mechanical EngineeringLeobenAustria

Personalised recommendations