Welding in the World

, Volume 63, Issue 2, pp 293–311 | Cite as

Slag characterisation of 308L-type stainless steel rutile flux-cored wires

  • Sylvia HollyEmail author
  • Peter Mayer
  • Christian Bernhard
  • Gerhard Posch
Research Paper


The behaviour of the weld characteristic of flux-cored wires is strongly influenced by the flux. The weld metal and weldability are determined by the flux composition and to a much smaller level by shielding gas used as well. The wide variety of components combined with the complexity of the welding process result in intricate mechanisms occurring in the slag. The slags of the different rutile flux-cored wires, designed for either position or standard downhand welding, were analysed in order to gain knowledge about the complex slag mechanisms and to carry out a metallurgical characterisation. Chemical analysis, differential thermal analysis and microstructural investigations of the slags were conducted to identify and characterise the formed phases. In addition, the viscosities of the slags were measured and correlated with the DTA results.


Slag characterisation Flux-cored wires DTA HT-LSCM Viscosity 


Funding information

The authors gratefully acknowledge financial support from the K1-MET GmbH Metallurgical Competence Centre. The research program of the K1-MET Competence Centre is supported by COMET (Competence Centre for Excellent Technologies), the Austrian program for competence centres. COMET is funded by the Federal Ministry for Transport, Innovation, and Technology, the Federal Ministry for Science, Research and Economy, the provinces of Upper Austria, Tyrol, and Styria as well as the Styrian Business Promotion Agency (SFG).


  1. 1.
    Strassburg F W, Wehner H, Schweißen nichtrostender Stähle, 4., überarb. u. erw. Aufl., DVS-Vlg, Düsseldorf, 2008Google Scholar
  2. 2.
    Mills KC, Yuan L, Jones RT (2011) Estimating the physical properties of slags. J South Afr Inst Min Metall 111(10):649–658Google Scholar
  3. 3.
    Verein Deutscher Eisenhüttenleute (VDEh) (1995) Slag atlas, 2nd edn. Verlag Stahleisen, DüsseldorfGoogle Scholar
  4. 4.
    Mysen BO (1988) Structure and properties of silicate melts. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Santhy K, Sowmya A, Sankaranarayanan SR (2005) Effect of oxygen to silicon ratio on the viscosity of metallurgical slags. ISIJ Int 45(7):1014–1018CrossRefGoogle Scholar
  6. 6.
    ISO 11357-2 (2013) Plastics – differential scanning calorimetry – part 2: determination of glass transition temperature.
  7. 7.
    Verein Deutscher Eisenhüttenleute (VDEh), Ausschuss für Metallurgische Grundlagen (1981) Slag atlas. Verlag Stahleisen, DüsseldorfGoogle Scholar
  8. 8.
    Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604CrossRefGoogle Scholar
  9. 9.
    Kekkonen M, Oghbasilasie H, Louhenkilpi S (2012) Viscosity models for molten slags, research report, Aalto University. Helsinki, Finland Google Scholar
  10. 10.
    Urbain G, Cambier F, Deletter M, Anseau MR (1981) Viscosity of silicate melts. Trans J Br Ceram Soc 80(4):139Google Scholar
  11. 11.
    Bauné E, Bonnet C, Liu S (2000) Reconsidering the basicity of a FCAW consumable-part 1: solidified slag composition of a FCAW consumable as a basicity indicator. Weld J 79(3):57s–65sGoogle Scholar
  12. 12.
    Mills K (2011) The estimation of slag properties: short course presented as part of Southern African Pyrometallurgy,, Abgerufen am: 04.08.2016
  13. 13.
    Schwemmer DD, Olson DL, Williamson DL (1979) The relationship of weld penetration to the welding flux. Weld J 58(5):153s–160sGoogle Scholar
  14. 14.
    Herasymenko P (1938) Electrochemical theory of slag-metal equilibria. Part I.—reactions of manganese and silicon in acid open-heart furnace. Trans Faraday Soc 34(0):1245–1254CrossRefGoogle Scholar
  15. 15.
    Sohn I, Wang W, Matsuura H, Tsukihashi F, Min DJ (2012) Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO. ISIJ Int 52(1):158–160CrossRefGoogle Scholar
  16. 16.
    Mysen B, Neuville D (1995) Effect of temperature and TiO2 content on the structure of Na2Si2O5-Na2Ti2O5 melts and glasses. Geochim Cosmochim Acta 59(2):325–342CrossRefGoogle Scholar
  17. 17.
    Mills K, Guo M (2014) The importance of materials properties in high-temperature processes. ISIJ Int 54(9):2000–2007CrossRefGoogle Scholar
  18. 18.
    Kondratiev A, Jak E, Hayes PC (2002) Predicting slag viscosities in metallurgical systems. JOM 54(11):41–45CrossRefGoogle Scholar
  19. 19.
    Mills KC (1993) The influence of structure on the physico-chemical properties of slags. ISIJ Int 33(1):148–155CrossRefGoogle Scholar
  20. 20.
    Iida T, Sakai H, Kita Y, Shigeno K (2000) An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ Int 40(Suppl):S110–S114CrossRefGoogle Scholar
  21. 21.
    Mills KC, Sridhar S (2013) Viscosities of ironmaking and steelmaking slags. Ironmak Steelmak 26(4):262–268CrossRefGoogle Scholar
  22. 22.
    Zhang S, Zhang X, Peng H, Wen L, Qiu G, Hu M, Bai C (2014) Structure analysis of CaO–SiO2–Al2O3–TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy. ISIJ Int 54(4):734–742CrossRefGoogle Scholar
  23. 23.
    Angell CA, Sichina W (1976) Thermodynamics of the glass transition: empirical aspects. Ann N Y Acad Sci 279(1 The Glass Tra):53–67CrossRefGoogle Scholar
  24. 24.
    Presoly P, Pierer R, Bernhard C (2012) Linking up of HT-LSCM and DSC measurements to characterize phase diagrams of steels. IOP Conf Ser: Mater Sci Eng 33:1–9CrossRefGoogle Scholar
  25. 25.
    Urbain G (1987) Viscosity estimation of slags. Steel Res 58(3):111–116CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.voestalpine Böhler Welding Austria GmbHKapfenbergAustria
  2. 2.Department of Ferrous MetallurgyMontanuniversitaet LeobenLeobenAustria
  3. 3.Fronius International GmbHWelsAustria

Personalised recommendations