Welding in the World

, Volume 62, Issue 5, pp 1013–1020 | Cite as

Numerical simulation of weld pool dynamics using a SPH approach

  • M. TrautmannEmail author
  • M. Hertel
  • U. Füssel
Research Paper


In this paper, we present a numerical model for the calculation of weld pool dynamics and the resulting weld seam structure with regard to the arc forces. The model uses an incompressible smoothed particle hydrodynamics method and is suitable for three-dimensional calculations with a high spatial resolution at low computational costs. The model is applied to a GTAW process, where the arc forces as well as the arc heat input is modelled on the basis of known values from measurement and literature. The validity of the model is shown for different arc currents by comparison of the calculated penetration profile with measurements. Finally, the model is used to perform parameter studies on the influence of the arc pressure and the arc shear on the penetration profile. The parameter studies show the strong influences of the arc forces on the penetration depth.


Smoothed particle hydrodynamics (SPH) GTAW Penetration depth Parameter study Numerical simulation 


  1. 1.
    Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40:R1–R23CrossRefGoogle Scholar
  2. 2.
    Kou S, Wang YH (1986) Weld pool convection and its effect. Weld J 65:63s–70sGoogle Scholar
  3. 3.
    Lu F, Tang X, Yu H, Yao S (2006) Numerical simulation on interaction between TIG welding arc and weld pool. Comput Mater Sci 35:458–465CrossRefGoogle Scholar
  4. 4.
    Cho MH, Lim YC, Farson DF (2006) Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape. Weld J 85:271s–283sGoogle Scholar
  5. 5.
    Hu J, Guo H, Tsai HL (2008) Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. Int J Heat Mass Transf 51:2537–2552CrossRefGoogle Scholar
  6. 6.
    Hertel M, Füssel U, Schnick M (2014) Numerical simulation of the plasma-MIG-process—interactions of the arcs, droplet detachment and weld pool formation. Welding World 58:85–92CrossRefGoogle Scholar
  7. 7.
    Murphy AB (2011) A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. J Phys D Appl Phys 44:194009CrossRefGoogle Scholar
  8. 8.
    McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61:2332–2335CrossRefGoogle Scholar
  9. 9.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  10. 10.
    Ginzburg I, Steiner K (2003) Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J Comput Phys 185:61–99CrossRefGoogle Scholar
  11. 11.
    Cleary P, Ha J, Alguine V, Nguyen T (2002) Flow modelling in casting processes. Appl Math Model 26:171–190CrossRefGoogle Scholar
  12. 12.
    Raj, D.; Cleary, P.W.: Investigation of flow dynamics and plastic deformation in arc welding using SPH. Seventh International Conference on CFD in the Minerals and Process Industries, 2009Google Scholar
  13. 13.
    Ito M.; Nishio Y.; Izawa S.; Fukunishi Y.; Shigeta M.: SPH Simulation of Gas Arc Welding Process. Seventh International Conference on Computational Fluid Dynamics, 2012Google Scholar
  14. 14.
    Ito M, Nishio Y, Izawa S, Fukunishi Y, Shigeta M (2015) Numerical simulation of joining process in a TIG welding system using incompressible SPH method. Quarterly Journal of the Japan Welding Society 33:34s–38sCrossRefGoogle Scholar
  15. 15.
    Trautmann M, Hertel M, Füssel U (2017) Numerical simulation of TIG weld pool dynamics using smoothed particle hydrodynamics. Int J Heat Mass Transf 115:842–853Google Scholar
  16. 16.
    Rokhlin, S.I.; Guu, A.C.: A study of arc force, pool depression, and weld penetration during gas tungsten arc welding Welding Journal(USA), Volume 72, 1993Google Scholar
  17. 17.
    Wendland H (1995s) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396CrossRefGoogle Scholar
  18. 18.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574CrossRefGoogle Scholar
  19. 19.
    Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible SPH. ACM Trans Graph 28(3):1–6Google Scholar
  20. 20.
    Morris JP, Fox PJ, Zhu Y (1997) Modelling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226CrossRefGoogle Scholar
  21. 21.
    Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33:333–353CrossRefGoogle Scholar
  22. 22.
    Phares DJ, Smedley GT, Flagan RC (2000) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375CrossRefGoogle Scholar
  23. 23.
    Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148:227–264CrossRefGoogle Scholar
  24. 24.
    Radaj D (1999) Schweissprozesssimulation: Grundlagen und Anwendungen. Verl. für Schweissen und Verwandte Verfahren, DVS-Verl, DüsseldorfGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Institute of Manufacturing Science and EngineeringTU DresdenDresdenGermany

Personalised recommendations