Welding in the World

, Volume 62, Issue 5, pp 1097–1118 | Cite as

Review of NDT and process monitoring techniques usable to produce high-quality parts by welding or additive manufacturing

  • D. ChauveauEmail author
Research Paper
Part of the following topical collections:
  1. Welding, Additive Manufacturing and Associated NDT


The main objectives of applying NDT techniques are to ensure the quality of an assembly or a part according to a given specification including known acceptance criteria. It generally enables not only to detect an indication, but also to classify it (size, position, nature…). Many non-destructive testing (NDT) techniques are effective in testing welded components. Radiography, ultrasonic testing, penetrant testing and magnetic particle testing are widely used and standardised. Phased arrays, TOFD and multi-elements eddy current are more and more extensively applied. Tomography, acoustic emission, ultrasonic guided waves, laser ultrasonic and optical techniques continue to be a strong topic of interest. Each of these techniques is based on different physical principles to detect defects on the surface of the part or over its whole volume. However, the geometry, physical and material properties of the part being tested are key factors in the applicability and performance of a given NDT technique. To date, the development of reliable NDT methods for additive manufacturing (AM) parts is still a major challenge. The process may generate various defects such as cracks, voids, inclusions and porosities. NDT techniques need to be optimised or developed to address singular features of the AM processes: complex geometry, special internal structures, anisotropic material properties, typical defects. Knowledge of the potential occurring imperfections produced by the various AM process needs to be improved in order to be able to select the best suited NDT techniques.


Welding Joining Additive manufacturing NDT Process monitoring Case study 



Many thanks to all my colleagues of Institut de Soudure who provided their case studies and expertise to make possible this review.


  1. 1.
    ISO 6520–1: Welding and allied processes - Classification of geometric imperfections in metallic materials - Part 1: Fusion welding.Google Scholar
  2. 2.
    D. Chauveau, A. Charbonnier, J. Dubresson: Evaluation des défauts et de leur nocivité dans les constructions soudées – Vol 1 Etude générale.Google Scholar
  3. 3.
    FITNET project: Vol 2 FFS Annex–Appendix D NDE Methods.Google Scholar
  4. 4.
    B. Jonsson, G. Dobmann, A. Hobbacher, M. Kassner, G. Marquis: IIW guidelines on weld quality in relationship to fatigue strength - § 7 Inspection, quality control and documentationGoogle Scholar
  5. 5.
    ISO 9712, Non-destructive testing: Qualification and certification of NDT personnel.Google Scholar
  6. 6.
    R.Amédéo: Revue de la Soudure Autogène N°53 – Juillet 1912 – page 611.Google Scholar
  7. 7.
    P.Nennig: Etude sur les possibilités de remplacement d’un contrôle de surface PT par un contrôle ET–Institut de Soudure technical report N° 4565-IS 93XO-V1.Google Scholar
  8. 8.
    ISO 3452–3: Non-destructive testing - Penetrant testing - Part 3: Reference test blocks.Google Scholar
  9. 9.
    ISO 17636–1: Non-destructive testing of welds: Radiographic testing - Part 1: X- and gamma-ray techniques with film.Google Scholar
  10. 10.
    ISO 16371–1: Non-destructive testing: Industrial computed radiography with storage phosphor imaging plates - Part 1: Classification of systems.Google Scholar
  11. 11.
    ISO DIS/16371–2: Non-destructive testing: Industrial computed radiography with storage phosphor imaging plates - Part 2: General principles for testing of metallic materials using X-rays and gamma rays.Google Scholar
  12. 12.
    ISO 17636–2: Non-destructive testing of welds: Radiographic testing - Part 2: X- and gamma-ray techniques with digital detectors.Google Scholar
  13. 13.
    General Electric: Industrial Radiography-Image forming techniques.Google Scholar
  14. 14.
    EN 13068–1: Non-destructive testing - Radioscopic Testing-Part 1: Quantitative measurement of image properties.Google Scholar
  15. 15.
    EN 13068–2: Non-destructive testing - Radioscopic Testing-Part 2: Qualitative control and long term stability of imaging devices.Google Scholar
  16. 16.
    Jess Waller: Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report-NASA/TM—2014–218,560.Google Scholar
  17. 17.
    D. Chauveau, D. Flotté, C.Boucher: Main Issues of the European TOFDPROOF Project–ECNDT Munich 2006 – Tu. 3.3.1.Google Scholar
  18. 18.
    D. Flotté, A. Blettner, D.Chauveau: Applications industrielles des ultrasons à haute fréquence – STC Mai–Juin 1993 pp. 57–63.Google Scholar
  19. 19.
    M. El Mountassir, S. Yaacoubi, A. Bastien, H. Walaszek et D. Chauveau: UT laser: Partie 1- Développement d’une méthode de mesure d’épaisseur – submitted to STC for publication.Google Scholar
  20. 20.
    S. Yaacoubi, W. K. Yaacoubi, P. Dainelli, D. Chauveau, and M. Riethmuller: Proposal for NDT strategies to assess the structural integrity of nuclear pipings – 10th Int. Conf on NDE in relation to structural integrity for nuclear and pressurized components-1to 3 Oct 2013 – Cannes Fr - pp. 933–947.Google Scholar
  21. 21.
    P. Calmon, E. Iakovleva, A. Fidahoussen, G. Ribay, S. Chatillon: Model-based reconstruction of UT array data -34th Review of Progress in QNDE, July 22–27 2007, Golden, Colorado.Google Scholar
  22. 22.
    D. Chauveau, F. Angelini, A. Bemba, W. Ké, O. Roy, D. Langlois, G. Benoist: Nouvelles possibilités offertes par la technique FMC/TFM embarqué dans un équipement multiéléments portable pour l’aide à la caractérisation des défauts de soudures - Journées COFREND de Bordeaux 2014.Google Scholar
  23. 23.
    D. Chauveau, A. Michel, G. Gras, M. Houari, F. Scandella, P. Dainelli: The OPC approach: a pragmatic answer to the risk assessment for replacing a NDT method or technique by another one - Journées COFREND de Bordeaux 2014.Google Scholar
  24. 24.
    ISO 17635: Non-destructive testing of welds - General rules for metallic materials.Google Scholar
  25. 25.
    ISO 5817: Welding-Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding- Quality levels for imperfections.Google Scholar
  26. 26.
    ISO 10042: Welding-Arc-welded joints in aluminum and its alloys -- Quality levels for imperfections.Google Scholar
  27. 27.
    ISO 13919–2: Welding-Electron and laser beam welded joints -- Guidance on quality levels for imperfections -- Part 2: Aluminum and its weldable alloysGoogle Scholar
  28. 28.
    ISO 23279: Non-destructive testing of welds -- Ultrasonic testing -- Characterization of indications in welds.Google Scholar
  29. 29.
    ASTM E07 WK 47031: New Guide for Non Destructive Testing of Additive Manufactured Metal Parts Used in Aerospace Applications.Google Scholar
  30. 30.
    ISO TC 261 JG59: Additive Manufacturing–General Principles–Non Destructive Testing of additive manufacturing parts.Google Scholar
  31. 31.
    W. J. Seufzer et K. M. B. Taminger: Control of Space-Based Electron Beam Free Form Fabrication-Annual International Solid Freeform −2007.Google Scholar
  32. 32.
    Hans Rieder, Alexander Dillhöfer, Martin Spies, Joachim Bamberg, Thomas Hess: Online Monitoring of Additive Manufacturing Processes Using Ultrasound -11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6–10, 2014, Prague, Czech Republic.Google Scholar
  33. 33.
    M. El Mountassir, S. Yaacoubi, F. Dahmene, D. Chauveau: Investigations on Monitoring Algorithms for an Optimal False Calls Management–IIW Structural Health Monitoring. Seminar 1-3July 2015, Helsinki, Finland.Google Scholar
  34. 34.
    IIW Handbook: on the ultrasonic examination of austenitic and dissimilar welds.Google Scholar
  35. 35.
    D. Chauveau, J. Hatsch, A. Blettner, E. Abittan: Contrôle en fabrication des soudures de tuyauterie – Guide des alternatives à la gammagraphie Ir 192 – Edition Chirat–Dépôt légal 2009 N° 200,906.0103.Google Scholar
  36. 36.
    S.Demonte: Feedback on phased array examination (PAUT) of homogeneous/inhomogeneous austenitic, austeno-ferritic steel welds - ESOPE. symposium 13–15 September 2016 – PARIS.Google Scholar
  37. 37.
    Sylvie Bittendiebel, Eric Riff: Internal Institut de Soudure report.Google Scholar
  38. 38.
    Thong Trantien, Stéphane Pernodet: Modélisation dynamique en 4D du soudage lower pan A380 en TIG robotisé adaptatif. Soudage et Techniques Connexes–Mars Avril 2015- pp. 41–46.Google Scholar
  39. 39.
    A. Ben Attar, S. Zimme, S. Chevret, L. Langlois, F. Leonard, G. Abba, R. Bigot: Methodology developed to perform robotic online trajectory corrections -11th Symposium on Friction Stir Welding-2016 – TWI Cambridge.Google Scholar
  40. 40.
    A. Ben Attar, J. Hatsch, M. Ferrari: Maitrise de la qualité des soudures du procédé FSW par la mesure de la température de soudage - Poster aux ateliers scientifiques de l’Institut Carnot (ICEEL) du 26 mai 2016.Google Scholar
  41. 41.
    ISO 17640: Non-destructive testing of welds - Ultrasonic testing - Techniques, testing levels, and assessment.Google Scholar
  42. 42.
    S. Yaacoubi, D. Chauveau, W.K. Yaacoubi, F. Scandella, P. Dainelli 2014: Towards smart weld for the monitoring of tubular structures using ultrasonic guided waves - Journées COFREND de BordeauxGoogle Scholar
  43. 43.
    ISO 22825 Non-destructive testing of welds - Ultrasonic testing - Testing of welds in austenitic steels and nickel-based alloys.Google Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Institut de SoudureVillepinteFrance

Personalised recommendations