Cycles of triply coupled mechanical contact, current, and thermal conduction phenomena during resistance spot welding

  • Tomoyoshi HorieEmail author
  • Tomoya Niho
  • Naoki Hayashi
  • Daisuke Ishihara
Research Paper


The characteristics of the cycles of coupled phenomena that occur among elastic-plastic contact deformation, current distribution, heat generation, and thermal conduction during resistance spot welding are examined using coupled finite element analyses. The current density peak that appears at the center of the interface moves outward along the interface to the high-contact resistance region, then the peaks in the current density, contact resistance, Joule heat generation, and temperature migrate outward with the contact edge followed by the melting zone during the welding process. The influence of welding parameters on the cycles of coupled phenomena is also examined. When the weld current is increased, the current density within the contact surface does not increase but enlarges the high-temperature region instead of heating the central part of the interface. When a small electrode force is applied, the nugget formation is initially enhanced not due to the increased contact resistance but rather because of the increase in the current density through the interface with a reduced contact area.


Resistance spot welding Cycles of coupled effects Contact resistance Nugget generation Welding parameters Triply coupled analysis 



The authors wish to express their gratitude for cooperation of TOYOTA MOTOR KYUSHU Inc.

Funding information

This work was supported by JSPS KAKENHI grant number 16K05043.


  1. 1.
    Babu S, Santella M, Feng Z, Riemer B, Cohron J (2001) . Sci Technol Weld Joining 6(3):126. CrossRefGoogle Scholar
  2. 2.
    Zhang W (2006) . Weld World 50(3):29. CrossRefGoogle Scholar
  3. 3.
    Feulvarch E, Rogeon P, Carré P, Robin V, Sibilia G, Bergheau J (2006) . Numer Heat Transfer; Part A: Appl 49(4):345. CrossRefGoogle Scholar
  4. 4.
    Hou Z, Kim IS, Wang Y, Li C, Chen C (2007) . J Mater Process Technol 185(1-3):160. CrossRefGoogle Scholar
  5. 5.
    Eisazadeh H, Hamedi M, Halvaee A (2010) . Mater Des 31(1):149 . CrossRefGoogle Scholar
  6. 6.
    Ma N, Murakawa H (2010) . J Mater Process Technol 210(14): 2045. CrossRefGoogle Scholar
  7. 7.
    Shen J, Zhang Y, Lai X, Wang P (2011) . Mater Des 32(2):550 . CrossRefGoogle Scholar
  8. 8.
    Iyota M, Mikami Y, Hashimoto T, Taniguchi K, Ikeda R, Mochizuki M (2012) J Phys: Conf Series 379(1).
  9. 9.
    Raoelison R, Fuentes A, Rogeon P, Carré P, Loulou T, Carron D, Dechalotte F (2012) . J Mater Process Technol 212(8):1663. CrossRefGoogle Scholar
  10. 10.
    Wan Z, Wang HP, Wang M, Carlson BE, Sigler DR (2016) . Int J Heat Mass Transfer 101(Supplement C):749. CrossRefGoogle Scholar
  11. 11.
    Moshayedi H, Sattari-Far I (2012) . J Mater Process Technol 212(2):347. CrossRefGoogle Scholar
  12. 12.
    Wan X, Wang Y, Zhang P (2014) . J Mater Process Technol 214 (11):2723. CrossRefGoogle Scholar
  13. 13.
    Pakkanen J, Vallant R, Kičin M (2016) . Weld World 60(3):393. CrossRefGoogle Scholar
  14. 14.
    Niho T, Horie T, Morita Y, Ishihara D, Yamakawa D, Momii S (2015) . Yosetsu Gakkai Ronbunshu/Q J Jpn Weld Soc 33(3):271. Google Scholar
  15. 15.
    Niho T, Horie T, Uefuji J, Ishihara D (2017) . Comput Struct 178: 129. CrossRefGoogle Scholar
  16. 16.
    Rolph WD, Bathe KJ (1982) . Int J Numer Methods Eng 18(1):119. CrossRefGoogle Scholar
  17. 17.
    MSC.Software, Marc 2012 volume a: theory and user information. MSC Software (2012)Google Scholar
  18. 18.
    Greenwood J (1966) . British J Appl Phys 17(12):1621. CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  1. 1.Kyushu Institute of TechnologyFukuokaJapan

Personalised recommendations