Advertisement

Comparing the effect of electrode geometry on resistance spot welding of aluminum alloys between experimental results and numerical simulation

  • Markus TuchtfeldEmail author
  • Stefan Heilmann
  • Uwe Füssel
  • Sven Jüttner
Research Paper
  • 30 Downloads

Abstract

With the tightened emission limits the amount of aluminum sheets in future body-in-white concepts is on the rise. Thus, there is a need for optimizing the joining techniques to fulfill the upcoming challenges linked to high volume production. Especially the electrode life for resistance spot welding as a reliable and established process needs to improve. In order to do so the effect of electrode geometries on the electrode life is investigated. It is shown that the radius of curvature, the size of the face diameter, and the cone angle influences the electrode life. The reason for this behavior is explained by a numerical simulation developed by the TU Dresden. Based on these findings, an analysis with the purpose of investigating an improved electrode geometry is conducted. It is shown that a domed electrode with a radius of curvature of 150 mm should be used. This electrode combines the ability to crack the oxide layer effectively while ensuring a sufficient area of contact between electrode and sheet.

Keywords

Aluminum alloys Resistance spot welding Resistance welding electrodes Contact resistance Simulating 

References

  1. 1.
    Kucza JC, Butruille JR, Hank E et al (1997) Aluminum as-rolled sheet for automotive applications—effect of surface oxide on resistance spot welding and adhesive bonding behavior. In: SAE International400 Commonwealth Drive, Warrendale, PA, United StatesGoogle Scholar
  2. 2.
    DIN Deutsches Institut für Normung e.V. (2010) Resistance welding—spot welding electrode caps(DIN EN ISO 5821:2009)Google Scholar
  3. 3.
    Hicken S (1997) Metallkundliche Untersuchungen zu Verschleißvorgängen an Elektroden beim Widerstandspunktschweißen von Aluminium. Techn. Hochsch., Diss.--Aachen, 1997, Als Ms. gedr. Aachener Berichte Fügetechnik, vol 97,5. Shaker, AachenGoogle Scholar
  4. 4.
    Hamm KJ (1989) Beitrag zur Qualitätssicherung durch Analyse des Widerstandspunktschweissprozesses beim Fügen von Aluminiumwerkstoffen. Techn. Hochsch., Diss.--Aachen, 1987. Schweißtechnische Forschungsberichte, vol 26. DVS-Verl., DüsseldorfGoogle Scholar
  5. 5.
    Li Y, Wei Z, Li Y, Shen Q, Lin ZQ (2013) Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding. Int J Heat Mass Transf 65:400–408.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.012 CrossRefGoogle Scholar
  6. 6.
    Leuschen B (1984) Beitrag zum Tragverhalten von Aluminium- und Aluminium/Stahl-Widerstandspunktschweißverbindungen bei verschiedenartiger Beanspruchung. Fotodruck J. Mainz GmbHGoogle Scholar
  7. 7.
    Bowers RJ, Sorensen CD, Eagar TW (1990) Electrode geometry in resistance spot welding. Weld J (2):45–51Google Scholar
  8. 8.
    Ikeda R, Yasuda K, Hashiguchi K et al (1995) Effect of electrode configuration on electrode life in resistance spot welding of galvannealed steel and aluminum alloy for car body sheets. Proc Adv Technol Process:144–151Google Scholar
  9. 9.
    GSI SLV München (2004) Standmengenerhöhung beim Widerstandsschweißen durch Elektrodenfräsen. SchlussberichtGoogle Scholar
  10. 10.
    Thornton M, Newton C, Keay B et al. (eds) (1996) Spot welding of aluminum sheet: a statistical approach to measuring the influence of different surfacesGoogle Scholar
  11. 11.
    Eichhorn F, Kunsmann A (1970) Tragverhalten von Punktschweißverbindungen an 1 bis 3 mm dicken Stahlblechen bei verschiedenartiger Beanspruchung, vol 58. Deutscher Verlag für Schweißtechnik, DüsseldorfGoogle Scholar
  12. 12.
    Ostermann F (2014) Anwendungstechnologie Aluminium, 3., neu bearb. Aufl. 2014. VDI-Buch. Springer, BerlinGoogle Scholar
  13. 13.
    Sigler DR, Carlson BE (2013) Improving aluminum resistance spot welding in automotive structures. Weld J (92):64–72Google Scholar
  14. 14.
    Browne D, Newton C, Keay B (1996) Aluminum and steel resistance spot welding: modeling the differences. Adv Technol Process:50–57Google Scholar
  15. 15.
    Kunze S, Hahn O (2014) Beitrag zur Erhöhung der Prozesssicherheit beim Punktschweißen und Punktschweißkleben von Aluminiumkarosseriewerkstoffen. Univ., Diss.--Paderborn, 2013. Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, vol 100. Shaker, HerzogenrathGoogle Scholar
  16. 16.
    Carlson BE, Sigler DR (eds) (2013) Resistance spot welding of sheet, extruded and cast aluminium using the multi-ring domed electrodeGoogle Scholar
  17. 17.
    Heilmann S, Zwahr C, Knape A, Zschetzsche J, Lasagni AF, Füssel U (2018) Improvement of the electrical conductivity between electrode and sheet in spot welding process by direct laser interference patterning. Adv Eng Mater 114:1700755.  https://doi.org/10.1002/adem.201700755 CrossRefGoogle Scholar
  18. 18.
    Deutscher Verband für Schweißen und verwandte Verfahren e.V. (ed) (2013) Tagungsband 22.DVS-Sondertagung Widerstandsscheißen, DuisburgGoogle Scholar
  19. 19.
    Florea RS, Solanki KN, Bammann DJ, Baird JC, Jordon JB, Castanier MP (2012) Resistance spot welding of 6061-T6 aluminum: failure loads and deformation. Mater Des 34:624–630CrossRefGoogle Scholar
  20. 20.
    DIN Deutsches Institut für Normung e.V. (2016) Resistance welding - Destructive testing of welds - Specimen dimensions and procedure for tensile shear testing resistance spot and embossed projection welds (DIN EN ISO 14273:2016–11)Google Scholar
  21. 21.
    DIN Deutsches Institut für Normung e.V. (2004) Resistance welding - Procedures for determining the weldability lobe for resistance spot, projection and seam welding (DIN EN ISO 14327:2004–06)Google Scholar
  22. 22.
    GSI SLV München (2011) Entwicklung eines geeigneten Elektrodenbearbeitungsverfahrens für das Widerstandspunktschweißen von Aluminiumwerkstoffen. SchlussberichtGoogle Scholar
  23. 23.
    Rashid M (2008) Some influences of tribology in resistance spot welding of aluminum alloysGoogle Scholar
  24. 24.
    Gesellschaft für Schweißtechnik International mbH (2011) Entwicklung eines geeigneten Elektrodenbearbeitungsverfahrens für das Widerstandspunktschweißen von Aluminiumwerkstoffen. DVS Bericht 5160/11Google Scholar
  25. 25.
    Klages E, Voigt A (2012) Visualisierung der Temperaturentwicklung der Schweißelektroden über den gesamten zeitlichen Verlauf eines Punktschweißprozesses. Schweißen und Schneiden 64(10)Google Scholar
  26. 26.
    Heilmann S, Mathiszik C, Merx M, Müller J, Zschetzsche J, Ihlenfeldt S, Füssel U (2016) Numerical simulation strategies and test setup for resistance spot welding process with motion overlay. Weld World 61:35–46.  https://doi.org/10.1007/s40194-016-0403-z CrossRefGoogle Scholar
  27. 27.
    Wan Z, Wang H-P, Wang M, Carlson BE, Sigler DR (2016) Numerical simulation of resistance spot welding of Al to zinc-coated steel with improved representation of contact interactions. Int J Heat Mass Transf 101:749–763.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.023 CrossRefGoogle Scholar
  28. 28.
    Wang B, Hua L, Wang X, Song Y, Liu Y (2015) Effects of electrode tip morphology on resistance spot welding quality of DP590 dual-phase steel. Int J Adv Manuf Technol 83:1917–1926.  https://doi.org/10.1007/s00170-015-7703-0 CrossRefGoogle Scholar
  29. 29.
    Hamedi M, Atashparva M (2017) A review of electrical contact resistance modeling in resistance spot welding. Weld World. 61:269–290.  https://doi.org/10.1007/s40194-016-0419-4 CrossRefGoogle Scholar
  30. 30.
    Sorpas 2D (2015) User Manual: Version 12Google Scholar
  31. 31.
    Manladan SM, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90(1–4):605–634.  https://doi.org/10.1007/s00170-016-9225-9 CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  1. 1.Volkswagen GroupWolfsburgGermany
  2. 2.Institute of Manufacturing Technology, Chair of Joining Technology and AssemblyTechnische Universität DresdenDresdenGermany
  3. 3.Institute of Materials and Joining TechnologyOtto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations