Advertisement

Probing Local Mechanical Properties in Polymer-Ceramic Hybrid Acetabular Sockets Using Spherical Indentation Stress-Strain Protocols

  • Hyung N. Kim
  • Sourav Mandal
  • Bikramjit Basu
  • Surya R. KalidindiEmail author
Technical Article
  • 49 Downloads

Abstract

Mechanical properties exhibited by the materials used in biomedical device components for articulating joints play an important role in determining the implant performance. In the fabrication of complex-shaped parts, the thermomechanical history experienced in different locations of the final part can be substantially dissimilar, which may lead to large differences in the local microstructures and properties. In many instances, it is not feasible to evaluate experimentally the local mechanical properties in the as-manufactured bioimplant prototypes using standardized tests, and use this information in refining the manufacturing cycle to develop implants with improved performance. In order to bridge this critical gap between materials development and manufacturing, we explore here the use of recently developed spherical indentation stress-strain analysis protocols for the mechanical characterization of local properties in the as-manufactured biomedical device prototype. More specifically, this paper presents two main advances: (i) extension of spherical indentation stress-strain analysis protocols needed to extract reliable estimates of elastic modulus and indentation yield strength from polymer matrix composite (PMC) samples and (ii) demonstration of the differences in the properties between samples produced specifically for the standard tension tests and the as-fabricated PMC acetabular socket prototype intended for total hip joint replacement applications. The results of the present study revealed large differences in the mean and variance of the measured moduli and indentation yield strengths in the acetabular socket and the tensile specimen. Based on the extensive micro-computed tomography (micro-CT) analysis, an attempt has been made to rationalize the local property differences on the basis of microstructural attributes.

Keywords

Spherical indentation Polymer-ceramic composite Viscoelasticity Bioimplants Micro-CT 

Notes

Funding Information

SK would like to thank DST-SERB for Vajra fellowship. SM and BB would like to acknowledge the financial support provided by Department of Biotechnology, Government of India under “Centres of Excellence and Innovation in Biotechnology” scheme through the center of excellence project-Translational Center on Biomaterials for Orthopedic and Dental Applications.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. PearsonGoogle Scholar
  2. 2.
    Haque M, Saif M (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43(3):248–255.  https://doi.org/10.1007/BF02410523 CrossRefGoogle Scholar
  3. 3.
    Li X, Wang X, Chang WC, Chao YJ, Chang M (2005) Effect of tensile offset angles on micro/nanoscale tensile testing. Rev Sci Instrum 76(3):033904.  https://doi.org/10.1063/1.1865732 CrossRefGoogle Scholar
  4. 4.
    Ding W, Guo Z, Ruoff RS (2007) Effect of cantilever nonlinearity in nanoscale tensile testing. J Appl Phys 101(3):034316.  https://doi.org/10.1063/1.2435064 CrossRefGoogle Scholar
  5. 5.
    Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci 103(47):17741–17746.  https://doi.org/10.1073/pnas.0604237103 CrossRefGoogle Scholar
  6. 6.
    Castro J, Lee C (1987) Thermal and cure analysis in sheet molding compound compression molds. Polym Eng Sci 27(3):218–224.  https://doi.org/10.1002/pen.760270307 CrossRefGoogle Scholar
  7. 7.
    Lee LJ (1981) Curing of compression molded sheet molding compound. Polym Eng Sci 21(8):483–492.  https://doi.org/10.1002/pen.760210808 CrossRefGoogle Scholar
  8. 8.
    Patel A, Kravchenko O, Manas-Zloczower I (2018) Effect of curing rate on the microstructure and macroscopic properties of epoxy fiberglass composites. Polym 10(2):125.  https://doi.org/10.3390/polym10020125 CrossRefGoogle Scholar
  9. 9.
    Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23(11):1103–1113.  https://doi.org/10.1016/0021-9290(90)90003-L CrossRefGoogle Scholar
  10. 10.
    Rho JY, Ashman RB, Turner CH (1993) Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119.  https://doi.org/10.1016/0021-9290(93)90042-D CrossRefGoogle Scholar
  11. 11.
    Meira JBC, Ballester RY, Lima RG, Martins de Souza R, Driemeier L (2005) Geometrical aspects on bi-material microtensile tests. J Braz Soc Mech Sci Eng 27(3):310–313.  https://doi.org/10.1590/S1678-58782005000300014 CrossRefGoogle Scholar
  12. 12.
    Armstrong SR, Boyer DB, Keller JC (1998) Microtensile bond strength testing and failure analysis of two dentin adhesives. Dent Mater 14(1):44–50.  https://doi.org/10.1016/S0109-5641(98)00008-6 CrossRefGoogle Scholar
  13. 13.
    Pashley DH, Carvalho RM, Sano H, Nakajima M, Yoshiyama M, Shono Y, Fernandes CA, Tay F (1999) The microtensile bond test: a review. J Adhes Dent 1(4). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11725659. Accessed 17 Apr 2018
  14. 14.
    Oilo G (1993) Bond strength testing--what does it mean? Int Dent J 43(5):492–498 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8138312. Accessed 17 Apr 2018
  15. 15.
    Sudsangiam S, van Noort R (1999) Do dentin bond strength tests serve a useful purpose. J Adhes Dent 1(1):57–67 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11725686. Accessed 17 Apr 2018
  16. 16.
    Van Noort R, Noroozi S, Howard IC, Cardew G (1989) A critique of bond strength measurements. J Dent 17(2):61–67.  https://doi.org/10.1016/0300-5712(89)90131-0 CrossRefGoogle Scholar
  17. 17.
    Pethicai JB, Hutchings R, Oliver WC (1983) Hardness measurement at penetration depths as small as 20 nm. Philos Mag A 48(4):593–606.  https://doi.org/10.1080/01418618308234914 CrossRefGoogle Scholar
  18. 18.
    Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7(3):613–617.  https://doi.org/10.1557/JMR.1992.0613 CrossRefGoogle Scholar
  19. 19.
    Pharr GM, Strader JH, Oliver WC (2009) Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J Mater Res 24(3):653–666.  https://doi.org/10.1557/jmr.2009.0096 CrossRefGoogle Scholar
  20. 20.
    Pathak S, Stojakovic D, Doherty R, Kalidindi SR (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24(3):1142–1155.  https://doi.org/10.1557/jmr2009.137 CrossRefGoogle Scholar
  21. 21.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  22. 22.
    Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University PressGoogle Scholar
  23. 23.
    Tabor D (2000) The hardness of metals. Oxford University PressGoogle Scholar
  24. 24.
    Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R 91:1–36.  https://doi.org/10.1016/j.mser.2015.02.001 CrossRefGoogle Scholar
  25. 25.
    Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater 56(14):3523–3532.  https://doi.org/10.1016/j.actamat.2008.03.036 CrossRefGoogle Scholar
  26. 26.
    Pathak S, Shaffer J, Kalidindi SR (2009) Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442.  https://doi.org/10.1016/j.scriptamat.2008.11.028 CrossRefGoogle Scholar
  27. 27.
    Weaver JS, Priddy MW, McDowell DL, Kalidindi SR (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34.  https://doi.org/10.1016/j.actamat.2016.06.053 CrossRefGoogle Scholar
  28. 28.
    Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302.  https://doi.org/10.1016/j.actamat.2016.04.034 CrossRefGoogle Scholar
  29. 29.
    Donohue BR, Ambrus A, Kalidindi SR (2012) Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater 60(9):3943–3952.  https://doi.org/10.1016/j.actanat/2012.03.034 CrossRefGoogle Scholar
  30. 30.
    Nath S, Bodhak S, Basu B (2009) HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations. J Biomed Mater Res B Appl Biomater 88(1):1–11.  https://doi.org/10.1002/jbm.b.31050 CrossRefGoogle Scholar
  31. 31.
    Weaver JS (2015) Hierarchical and high throughput mechanical characterization of titanium alloys using spherical indentation stress-strain curves. Georgia Institute of TechnologyGoogle Scholar
  32. 32.
    Vachhani SJ, Doherty RD, Kalidindi SR (2013) Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751.  https://doi.org/10.1016/j.actamat.2013.03.005 CrossRefGoogle Scholar
  33. 33.
    Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36.  https://doi.org/10.1016/S1044-5803(02)00192-4 CrossRefGoogle Scholar
  34. 34.
    Hay J, Agee P, Herbert E (2010) Continuous stiffness measurement during instrumented indentation testing. Exp Tech 34(3):86–94.  https://doi.org/10.1111/j.1747-1567.2010.00618.x CrossRefGoogle Scholar
  35. 35.
    Hertz H, Jones DE, Schott GA (1896) Miscellaneous papers. Macmillan and CompanyGoogle Scholar
  36. 36.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57.  https://doi.org/10.1016/0020-7225(65)90019-4 CrossRefGoogle Scholar
  37. 37.
    Menčík J, Swain MV (1995) Errors associated with depth-sensing microindentation tests. J Mater Res 10(6):1491–1501.  https://doi.org/10.1557/JMR.1995.1491 CrossRefGoogle Scholar
  38. 38.
    Deuschle J, Enders S, Arzt E (2007) Surface detection in nanoindentation of soft polymers. J Mater Res 22(11):3107–3119.  https://doi.org/10.1557/JMR.2007.0394 CrossRefGoogle Scholar
  39. 39.
    Moseson AJ, Basu S, Barsoum MW (2008) Determination of the effective zero point of contact for spherical nanoindentation. J Mater Res 23(1):204–209.  https://doi.org/10.1557/JMR.2008.0012 CrossRefGoogle Scholar
  40. 40.
    Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies. J Appl Mech 27(3):438–444.  https://doi.org/10.1115/1.3644020 CrossRefGoogle Scholar
  41. 41.
    Hunter SC (1960) The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J Mech Phys Solids 8(4):219–234.  https://doi.org/10.1016/0022-5096(60)90028-4 CrossRefGoogle Scholar
  42. 42.
    Yang WH (1966) The contact problem for viscoelastic bodies. J Appl Mech 33(2):395–401.  https://doi.org/10.1115/1.3625055 CrossRefGoogle Scholar
  43. 43.
    Ting TCT (1968) Contact problems in the linear theory of viscoelasticity. J Appl Mech 35(2):248–254.  https://doi.org/10.1115/1.3601188 CrossRefGoogle Scholar
  44. 44.
    Ting TCT (1966) The contact stresses between a rigid indenter and a viscoelastic half-space. J Appl Mech 33(4):845–854.  https://doi.org/10.1115/1.3625192 CrossRefGoogle Scholar
  45. 45.
    Abba MT (2015) Spherical nanoindentation protocols for extracting microscale mechanical properties in viscoelastic materials. Georgia Institute of TechnologyGoogle Scholar
  46. 46.
    Weaver JS, Khosravani A, Castillo A, Kalidindi SR (2016) High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integr Mater Manuf Innov 5(1):10.  https://doi.org/10.1186/s40192-016-0054-3 CrossRefGoogle Scholar
  47. 47.
    Khosravani A, Cecen A, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69.  https://doi.org/10.1016/j.actamat.2016.10.033 CrossRefGoogle Scholar
  48. 48.
    Nath S, Bodhak S, Basu B (2007) Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition. J Biomed Mater Res A 83(1):191–208.  https://doi.org/10.1002/jbm.a.31203 CrossRefGoogle Scholar
  49. 49.
    Bodhak S, Nath S, Basu B (2009) Friction and wear properties of novel HDPE—HAp—Al2O3 biocomposites against alumina counterface. J Biomater Appl 23(5):407–433.  https://doi.org/10.1177/0885328208090012 CrossRefGoogle Scholar
  50. 50.
    Basu B, Jain D, Kumar N, Choudhury P, Bose A, Bose S, Bose P (2011) Processing, tensile, and fracture properties of injection molded Hdpe-Al2O3-HAp hybrid composites. J Appl Polym Sci 121(5):2500–2511.  https://doi.org/10.1002/app.33961 CrossRefGoogle Scholar
  51. 51.
    Tripathi G, Gough JE, Dinda A, Basu B (2013) In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites. J Biomed Mater Res A 101(6):1539–1549.  https://doi.org/10.1002/jbm.a.34452 CrossRefGoogle Scholar
  52. 52.
    Bodhak S, Nath S, Basu B (2008) Fretting wear properties of hydroxyapatite, alumina containing high density polyethylene biocomposites against zirconia. J Biomed Mater Res A 85(1):83–98.  https://doi.org/10.1002/jbm.a.31393 CrossRefGoogle Scholar
  53. 53.
    Tripathi G, Basu B (2014) In vitro osteogenic cell proliferation, mineralization, and in vivo osseointegration of injection molded high-density polyethylene-based hybrid composites in rabbit animal model. J Biomater Appl 29(1):142–157.  https://doi.org/10.1177/0885328214520805 CrossRefGoogle Scholar
  54. 54.
    Zeng K, Chiu CH (2001) An analysis of load–penetration curves from instrumented indentation. Acta Mater 49(17):3539–3551.  https://doi.org/10.1016/S1359-6454(01)00245-2 CrossRefGoogle Scholar
  55. 55.
    Deák Z, Grimm JM, Treitl M, Geyer LL, Linsenmaier U, Körner M, Reiser MF, Wirth S (2013) Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiol 266(1):197–206.  https://doi.org/10.1148/radiol.12112707 CrossRefGoogle Scholar
  56. 56.
    Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25(12):123009.  https://doi.org/10.1088/0266-5611/25/12/123009 CrossRefGoogle Scholar
  57. 57.
    Censor Y (1983) Finite series-expansion reconstruction methods. Proc IEEE 71(3):409–419.  https://doi.org/10.1109/PROC.1983.12598 CrossRefGoogle Scholar
  58. 58.
    Turner DM, Niezgoda SR, Kalidindi SR (2016) Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Model Simul Mater Sci Eng 24(7):075002.  https://doi.org/10.1088/0965-0393/24/7/075002 CrossRefGoogle Scholar
  59. 59.
    Forbes C, Evans M, Hastings N, Peacock B (2011) Statistical distributions. John Wiley & SonsGoogle Scholar
  60. 60.
    Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116.  https://doi.org/10.1016/j.actamat.2014.07.021 CrossRefGoogle Scholar
  61. 61.
    Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30.  https://doi.org/10.1016/j.ijplas.2017.03.004 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Laboratory for Biomaterials, Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations