Creep deformation behavior during densification of ZrB2-SiBCN ceramics with ZrO2 additive

Abstract

ZrB2-SiBCN ceramics with ZrO2 additive are hot-pressed under a constant applied pressure. The densification behavior of the composites is studied in a view of creep deformation by means of the Bernard-Granger and Guizard model. With determination of the stress exponent (n) and the apparent activation energy (Qd), the specific deformation mechanisms controlling densification are supposed. Within lower temperature ranges of 1300–1400 °C, the operative mechanism is considered to be grain boundary sliding accommodated by atom diffusion of the polymer-derived SiBCN (n = 1, Qd = 123±5 kJ/mol) and by viscous flow of the amorphous SiBCN (n = 2, Qd = 249±5 kJ/mol). At higher temperatures, the controlling mechanism transforms to lattice or intra-granular diffusion creep (n = 3–5) due to gradual consumption of the amorphous phase. It is suggested that diffusion of oxygen ions inside ZrO2 into the amorphous SiBCN decreases the viscosity, modifies the fluidity, and contributes to the grain boundary mobility.

References

  1. [1]

    Guo SQ. Densification of ZrB2-based composites and their mechanical and physical properties: A review. J Eur Ceram Soc 2009, 29: 995–1011.

    CAS  Article  Google Scholar 

  2. [2]

    Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc 2007, 90: 1347–1364.

    CAS  Article  Google Scholar 

  3. [3]

    Chamberlain AL, Fahrenholtz WG, Hilmas GE. Pressureless sintering of zirconium diboride. J Am Ceram Soc 2006, 89: 450–456.

    CAS  Article  Google Scholar 

  4. [4]

    Monteverde F, Bellosi A, Scatteia L. Processing and properties of ultra-high temperature ceramics for space applications. Mat Sci Eng A 2008, 485: 415–421.

    Article  Google Scholar 

  5. [5]

    Krishnarao RV, Bhanuprasad VV, Madhusudhan Reddy G. ZrB2-SiC based composites for thermal protection by reaction sintering of ZrO2+B4C+Si. J Adv Ceram 2017, 6: 320–329.

    CAS  Article  Google Scholar 

  6. [6]

    Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites. J Eur Ceram Soc 2002, 22: 279–288.

    CAS  Article  Google Scholar 

  7. [7]

    Ahmadi Z, Nayebi B, Shahedi Asl M, et al. Sintering behavior of ZrB2-SiC composites doped with Si3N4: A fractographical approach. Ceram Int 2017, 43: 9699–9708.

    CAS  Article  Google Scholar 

  8. [8]

    Asl MS, Nayebi B, Ahmadi Z, et al. Effects of carbon additives on the properties of ZrB2-based composites: A review. Ceram Int 2018, 44: 7334–7348.

    CAS  Article  Google Scholar 

  9. [9]

    Zhang ZF, Sha JJ, Zu YF, et al. Fabrication and mechanical properties of self-toughening ZrB2-SiC composites from in situ reaction. J Adv Ceram 2019, 8: 527–536.

    CAS  Article  Google Scholar 

  10. [10]

    Feng B, Zhang Y, Li BY, et al. Medium-temperature sintering efficiency of ZrB2 ceramics using polymer-derived SiBCN as a sintering aid. J Am Ceram Soc 2019, 102: 855–866.

    CAS  Google Scholar 

  11. [11]

    Colombo P, Mera G, Riedel R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 2010, 93: 1805–1837.

    CAS  Google Scholar 

  12. [12]

    Stabler C, Ionescu E, Graczyk-Zajac M, et al. Silicon oxycarbide glasses and glass-ceramics: “All-Rounder” materials for advanced structural and functional applications. J Am Ceram Soc 2018, 101: 4817–4856.

    CAS  Article  Google Scholar 

  13. [13]

    Riedel R, Ruswisch LM, An LN, et al. Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500°C. J Am Ceram Soc 1998, 81: 3341–3344.

    CAS  Article  Google Scholar 

  14. [14]

    An LN, Riedel R, Konetschny C, et al. Newtonian viscosity of amorphous silicon carbonitride at high temperature. J Am Ceram Soc 1998, 81: 1349–1352.

    Article  Google Scholar 

  15. [15]

    Ravi Kumar NV, Mager R, Cai Y, et al. High temperature deformation behaviour of crystallized Si-B-C-N ceramics obtained from a boron modified poly(vinyl)silazane polymeric precursor. Scripta Mater 2004, 51: 65–69.

    Article  Google Scholar 

  16. [16]

    Ravi Kumar NV, Prinz S, Cai Y, et al. Crystallization and creep behavior of Si-B-C-N ceramics. Acta Mater 2005, 53: 4567–4578.

    Article  Google Scholar 

  17. [17]

    Stabler C, Roth F, Narisawa M, et al. High-temperature creep behavior of a SiOC glass ceramic free of segregated carbon. J Eur Ceram Soc 2016, 36: 3747–3753.

    CAS  Article  Google Scholar 

  18. [18]

    Zhang PF, Yang B, Lu Z, et al. Effect of AlN and ZrO2 on the microstructure and property of the 2Si-B-3C-N ceramic. Ceram Int 2018, 44: 3406–3411.

    CAS  Article  Google Scholar 

  19. [19]

    Ionescu E, Linck C, Fasel C, et al. Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 2010, 93: 241–250.

    CAS  Article  Google Scholar 

  20. [20]

    Bernard-Granger G, Addad A, Fantozzi G, et al. Spark plasma sintering of a commercially available granulated zirconia powder: Comparison with hot-pressing. Acta Mater 2010, 58: 3390–3399.

    CAS  Article  Google Scholar 

  21. [21]

    Zhang JY, Zhan H, Fu ZY, et al. In-situ synthesis and sintering of mullite glass composites by SPS. J Adv Ceram 2014, 3: 165–170.

    CAS  Article  Google Scholar 

  22. [22]

    Bernard-Granger G, Guizard C. Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater 2007, 55: 3493–3504.

    CAS  Article  Google Scholar 

  23. [23]

    Coble RL. Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J Appl Phys 1970, 41: 4798–4807.

    Article  Google Scholar 

  24. [24]

    Kashyap SK, Mitra R. Densification behavior involving creep during spark plasma sintering of ZrB2-SiC based ultra-high temperature ceramic composites. Ceram Int 2020, 46: 5028–5036.

    CAS  Article  Google Scholar 

  25. [25]

    Mukherjee A, Bird JE, Dorn JE. Experimental correlations for high-temperature creep. Lawrence Berkeley National Laboratory. 1968, LBNL Report #: UCRL-18526.

  26. [26]

    Helle AS, Easterling KE, Ashby MF. Hot-isostatic pressing diagrams: New developments. Acta Metall 1985, 33: 2163–2174.

    CAS  Article  Google Scholar 

  27. [27]

    Lam DCC, Lange FF, Evans AG. Mechanical properties of partially dense alumina produced from powder compacts. J Am Ceram Soc 1994, 77: 2113–2117.

    CAS  Article  Google Scholar 

  28. [28]

    Chawake N, Koundinya NTBN, Srivastav AK, et al. On correlation between densification kinetics during spark plasma sintering and compressive creep of B2 aluminides. Scripta Mater 2015, 107: 63–66.

    CAS  Article  Google Scholar 

  29. [29]

    Ramond L, Bernard-Granger G, Addad A, et al. Sintering of a quasi-crystalline powder using spark plasma sintering and hot-pressing. Acta Mater 2010, 58: 5120–5128.

    CAS  Article  Google Scholar 

  30. [30]

    Liu GH, Li RD, Yuan TC, et al. Spark plasma sintering of pure TiCN: Densification mechanism, grain growth and mechanical properties. Int J Refract Met Hard Mater 2017, 66: 68–75.

    CAS  Article  Google Scholar 

  31. [31]

    Zhang ZB, Zeng F, Han JJ, et al. Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics. J Mater Sci 2011, 46: 5940–5947.

    CAS  Article  Google Scholar 

  32. [32]

    Garvie RC. Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 1978, 82: 218–224.

    CAS  Article  Google Scholar 

  33. [33]

    Li HB, Liang KM, Gu SR. Stability of t-ZrO2 in zirconia powder prepared by sol-gel process. J Tsinghua Univ (Sci & Tech) 2001, 41: 13–15.

    CAS  Google Scholar 

  34. [34]

    Guo SQ, Kagawa Y, Nishimura T, et al. Elastic properties of spark plasma sintered (SPSed) ZrB2-ZrC-SiC composites. Ceram Int 2008, 34: 1811–1817.

    CAS  Article  Google Scholar 

  35. [35]

    Guo SQ, Nishimura T, Mizuguchi T, et al. Mechanical properties of hot-pressed ZrB2-MoSi2-SiC composites. J Eur Ceram Soc 2008, 28: 1891–1898.

    CAS  Article  Google Scholar 

  36. [36]

    Talmy IG, Zaykoski JA, Martin CA. Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere. J Am Ceram Soc 2008, 91: 1441–1447.

    CAS  Article  Google Scholar 

  37. [37]

    Mallik M, Ray KK, Mitra R. Effect of Si3N4 addition on compressive creep behavior of hot-pressed ZrB2-SiC composites. J Am Ceram Soc 2014, 97: 2957–2964.

    CAS  Article  Google Scholar 

  38. [38]

    Meléndez-Martínez J, Domínguez-Rodríguez A, Monteverde F, et al. Characterisation and high temperature mechanical properties of zirconium boride-based materials. J Eur Ceram Soc 2002, 22: 2543–2549.

    Article  Google Scholar 

  39. [39]

    Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics, 2nd edn. New York: Wiley, 1976.

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant No. 51272009) is sincerely acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Wang, Z., Fan, Y. et al. Creep deformation behavior during densification of ZrB2-SiBCN ceramics with ZrO2 additive. J Adv Ceram 9, 544–557 (2020). https://doi.org/10.1007/s40145-020-0393-6

Download citation

Keywords

  • zirconium boride
  • polymer-derived SiBCN
  • creep deformation
  • densification mechanism
  • viscosity