Advertisement

Journal of Advanced Ceramics

, Volume 8, Issue 2, pp 278–288 | Cite as

Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic

  • G. Hernandez-Cuevas
  • J. R. Leyva Mendoza
  • P. E. García-Casillas
  • C. A. Rodríguez González
  • J. F. Hernandez-Paz
  • G. Herrera-Pérez
  • L. Fuentes-Cobas
  • S. Díaz de la Torre
  • O. Raymond-Herrera
  • H. Camacho-MontesEmail author
Open Access
Research Article
  • 131 Downloads

Abstract

In the search of lead-free piezoelectric materials, ceramic processing techniques offer potential tools to increase the piezoelectric and ferroelectric properties in addition to new chemical compositions. Powders of pure BNKT16 (Bi0.5(Na0.84K0.16)0.5TiO3) phase were synthesized by sol-gel method with a low crystallization temperature (750 °C). Ceramic samples were sintered by pressureless sintering (PLS), sinter-forging (SF), and spark plasma sintering (SPS) techniques. Structural, morphological, and chemical characterizations were performed by XRD, Raman, EDS, and SEM. Sintered samples by PLS and SF exhibit rod-like grains associated to bismuth volatility. The highest remanent polarization (11.05 μC/cm2), coercive field (26.2 kV/mm), and piezoelectric coefficient (165 pC/N) were obtained for SF sample. The piezoresponse force microscopy (PFM) analysis shows that the crystallites at the nanoscale exhibit piezoelectric phenomenon and the highest piezoelectric response is reported for PLS sample. The presence of the rhombohedral phase, the increase in grain and crystallite size, and the oriented rod-like inclusions favoring the crystallographic texture are facts that enhance the piezoelectric coefficient for BNKT16 piezoceramics.

Keywords

lead-free piezoelectrics sol-gel pressureless sintering (PLS) sinter-forging (SF) spark plasma sintering (SPS) piezoresponse 

Notes

Acknowledgements

The authors are indebted to CONACYT grant A1-S-9232 for their valuable support. GHC and JRLM are grateful to CONACYT for the Ph.D. scholarship.

Supplementary material

40145_2019_314_MOESM1_ESM.pdf (159 kb)
Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic

References

  1. [1]
    Quan ND, Bac HL, Thiet DV, et al. Current development in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric materials. Adv Mater Sci Eng 2014, 2014: 365391.CrossRefGoogle Scholar
  2. [2]
    Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153–1177.CrossRefGoogle Scholar
  3. [3]
    Camargo J, Ramajo L, Rubio-Marcos F, et al. Ferroelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 ceramics. Adv Mater Res 2014, 975: 3–8.CrossRefGoogle Scholar
  4. [4]
    Chen P-Y, Chou C-C, Tseng T-Y, et al. Comparative study between conventional and microwave sintered lead-free BNKT ceramics. Ferroelectrics 2009, 381: 196–200.CrossRefGoogle Scholar
  5. [5]
    Ullah A, Ahn CW, Hussain A, et al. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol-gel technique. Curr Appl Phys 2010, 10: 1367–1371.CrossRefGoogle Scholar
  6. [6]
    Anjali K, Ajithkumar TG, Joy PA. Correlations between structure, microstructure, density and dielectric properties of the lead-free ferroelectrics Bi0.5(Na,K)0.5TiO3. J Adv Dielect 2015, 5: 1550028.CrossRefGoogle Scholar
  7. [7]
    Gonzalez AM, Pardo L, Montero-Cabrera ME, et al. Analysis of the rhombohedral-tetragonal symmetries coexistence in lead-free 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 ceramics from nanopowders. Adv Appl Ceram 2016, 115: 96–105.CrossRefGoogle Scholar
  8. [8]
    Liu X, Xue SD, Li F, et al. Giant electrostrain accompanying structural evolution in lead-free NBT-based piezoceramics. J Mater Chem C 2018, 6: 814–822.CrossRefGoogle Scholar
  9. [9]
    Liu X, Li F, Li P, et al. Tuning the ferroelectric-relaxor transition temperature in NBT-based lead-free ceramics by Bi nonstoichiometry. J Eur Ceram Soc 2017, 37: 4585–4595.CrossRefGoogle Scholar
  10. [10]
    Sasaki A, Chiba T, Mamiya Y, et al. Dielectric and piezoelectric properties of (Bi0.5Na)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 1999, 38: 5564–5567.CrossRefGoogle Scholar
  11. [11]
    Li W, Xu ZJ, Chu RQ, et al. Synthesis and characterization of (Na0.85K0.15)0.5Bi0.5TiO3 ceramics by different methods. Mater Res Bull 2011, 46: 871–874.CrossRefGoogle Scholar
  12. [12]
    Guilmeau E, Lambert S, Chateigner D, et al. Quantitative texture analysis of polyphased oxides by diffraction: Example of Bi2223 sinter-forged ceramic and Y123 foam superconductors. Mat Sci Eng B 2003, 104: 107–112.CrossRefGoogle Scholar
  13. [13]
    Hao JJ, Wang XH, Chen RZ, et al. Preparation of textured bismuth titanate ceramics using spark plasma sintering. J Am Ceram Soc 2004, 87: 1404–1406.CrossRefGoogle Scholar
  14. [14]
    Herrera Robles JO, Rodríguez González CA, de la Torre SD, et al. Dielectric properties of bismuth titanate densified by spark plasma sintering and pressureless sintering. J Alloys Compd 2012, 536: S511–S515.CrossRefGoogle Scholar
  15. [15]
    Liu J, Shen ZJ, Nygren M, et al. SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. J Eur Ceram Soc 2006, 26: 3233–3239.CrossRefGoogle Scholar
  16. [16]
    Kan YM, Wang PL, Xu T, et al. Spark plasma sintering of bismuth titanate ceramics. J Am Ceram Soc 2005, 88: 1631–1633.CrossRefGoogle Scholar
  17. [17]
    Chen XM, Liao YW, Wang HP, et al. Phase structure and electric properties of Bi0.5(Na0.825K0. 175)0.5TiO3 ceramics prepared by a sol-gel method. J Alloys Compd 2010, 493: 368–371.CrossRefGoogle Scholar
  18. [18]
    Pérez-Mezcua D, Calzada ML, Bretos I, et al. Influence of excesses of volatile elements on structure and composition of solution derived lead-free (Bi0.50Na0.50)1−xBaxTiO3 thin films. J Eur Ceram Soc 2016, 36: 89–100.CrossRefGoogle Scholar
  19. [19]
    Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Condens Matter 1993, 192: 55–69.CrossRefGoogle Scholar
  20. [20]
    Herrera-Pérez G, Castillo-Sandoval I, Solis-Canto O, et al. Local piezo-response for lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 electro-ceramic by switching spectroscopy. Mat Res 2018, 21: e20170605.CrossRefGoogle Scholar
  21. [21]
    Kreisel J, Glazer AM, Bouvier P, et al. High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys Rev B 2001, 63: 174106.CrossRefGoogle Scholar
  22. [22]
    Montero-Cabrera ME, Pardo L, García A, et al. The global and local symmetries of nanostructured ferroelectric relaxor 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3. Ferroelectrics 2014, 469: 50–60.CrossRefGoogle Scholar
  23. [23]
    Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr Sect B 2002, 58: 168–178.CrossRefGoogle Scholar
  24. [24]
    Jones GO, Kreisel J, Thomas PA. A structural study of the (Na1™xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature. Powder Diffr 2002, 17: 301–319.CrossRefGoogle Scholar
  25. [25]
    Aroyo MI, Kirov A, Capillas C, et al. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Cryst Sect A 2006, 62: 115–128.CrossRefGoogle Scholar
  26. [26]
    Kroumova E, Aroyo MI, Perez-Mato JM, et al. Bilbao crystallographic server: Useful databases and tools for phase-transition studies. Phase Transitions 2003, 76: 155–170.CrossRefGoogle Scholar
  27. [27]
    Wang J, Zhou Z, Xue J. Phase transition, ferroelectric behaviors and domain structures of (Na1/2Bi1/2)1™xTiPbxO3 thin films. Acta Mater 2006, 54: 1691–1698.CrossRefGoogle Scholar
  28. [28]
    Prado-Espinosa A, Camargo J, del Campo A, et al. Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman microscopy. J Alloys Compd 2018, 739: 799–805.CrossRefGoogle Scholar
  29. [29]
    Rout D, Moon KS, Rao VS, et al. Study of the morphotropic phase boundary in the lead-free Na1/2Bi1/2TiO3-BaTiO3 system by Raman spectroscopy. J Ceram Soc Jpn 2009, 117: 797–800.CrossRefGoogle Scholar
  30. [30]
    Ramajo L, Camargo J, Rubio-Marcos F, et al. Influences of secondary phases on ferroelectric properties of Bi(Na,K)TiO3 ceramics. Ceram Int 2015, 41: 5380–5386.CrossRefGoogle Scholar
  31. [31]
    Ramajo L, Castro M, Rubio-Marcos F, et al. Influence of MoO3 on electrical and microstructural properties of (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3. J Mater Sci: Mater Electron 2013, 24: 3587–3593.Google Scholar
  32. [32]
    Gruverman A, Kholkin A. Nanoscale ferroelectrics: Processing, characterization and future trends. Rep Prog Phys 2006, 69: 2443–2474.CrossRefGoogle Scholar
  33. [33]
    Bharathi P, Thomas P, Varma KBR. Piezoelectric properties of individual nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3 obtained by oxalate precursor route. J Mater Chem C 2015, 3: 4762–4770.CrossRefGoogle Scholar
  34. [34]
    Howard CJ, Kisi EH. Preferred orientation in Debye-Scherrer geometry: Interpretation of the March coefficient. J Appl Cryst 2000, 33: 1434–1435.CrossRefGoogle Scholar
  35. [35]
    Zolotoyabko E. Fast quantitative analysis of strong uniaxial texture using a March-Dollase approach. J Appl Cryst 2013, 46: 1877–1879.CrossRefGoogle Scholar
  36. [36]
    Camacho-Montes H, Garcia-Casillas PE, Rodríguez-Ramos R, et al. Simulation of the stress-assisted densification behavior of a powder compact: Effect of constitutive laws. J Am Ceram Soc 2008, 91: 836–845.CrossRefGoogle Scholar
  37. [37]
    Ayrikyan A, Prach O, Khansur NH, et al. Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites. Acta Mater 2018, 148: 432–441.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  • G. Hernandez-Cuevas
    • 1
  • J. R. Leyva Mendoza
    • 1
  • P. E. García-Casillas
    • 1
  • C. A. Rodríguez González
    • 1
  • J. F. Hernandez-Paz
    • 1
  • G. Herrera-Pérez
    • 2
  • L. Fuentes-Cobas
    • 2
  • S. Díaz de la Torre
    • 3
  • O. Raymond-Herrera
    • 4
  • H. Camacho-Montes
    • 1
    Email author
  1. 1.Instituto de Ingeniería y TecnologíaUniversidad Autónoma de Ciudad JuárezChihuahuaMexico
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.Centro de Investigación e Innovación TecnológicaInstituto Politécnico NacionalCiudad de MéxicoMéxico
  4. 4.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MexicoBaja CaliforniaMexico

Personalised recommendations