Journal of Advanced Ceramics

, Volume 7, Issue 3, pp 207–217 | Cite as

Co2+ substituted Mg–Cu–Zn ferrite: Evaluation of structural, magnetic, and electromagnetic properties

  • L. M. Thorat
  • J. Y. Patil
  • D. Y. Nadargi
  • U. R. Ghodake
  • R. C. Kambale
  • S. S. SuryavanshiEmail author
Open Access
Research Article


We report the synthesis of Co2+ substituted Mg–Cu–Zn ferrite via citrate gel combustion process and thereby its structural, transport, and magnetic properties for the use in electromagnetic energy absorption application. The polycrystalline ferrite system is investigated by interplay of stoichiometric composition with Mg0.25–xCoxCu0.25Zn0.5Fe2O4 (0 ⩽ x ⩽ 0.25). Structural investigations using X-ray diffraction (XRD) and selected area electron diffraction (SAED) reveal the formation of spinel structure with linear growth of lattice constant due to Co2+ substitution. The microstructural analysis (TEM and SEM) depicts the dense microstructure with the average grain size of 0.42–1.25 μm. The elemental analysis (EDS) confirms the elemental composition of the as-prepared ferrite with respect to the initial concentrations of the synthetic composition used. The observed variations in initial permeability (μi) and magnetic moment (nB) are explained based on deviation in saturation magnetization (Ms), anisotropy constant (K1), density values, and exchange interaction. The temperature dependence of DC resistivity confirms the semiconducting behavior of the as-prepared ferrite material, with an increase in the DC resistivity by an incorporation of cobalt. Furthermore, the effects of adding Co2+ on the Curie temperature, frequency dependent dielectric properties of the ferrite material are also discussed.


Co–Mg–Cu–Zn ferrite spinel phase electrical resistivity saturation magnetization anisotropy constant Curie temperature 



R. C. Kambale thankfully acknowledges BCUD, Savitribai Phule Pune University for providing research funding (Grant No. RG-31).


  1. [1]
    Shirsath SE, Kadam RH, Patange SM, et al. Enhanced magnetic properties of Dy3+ substituted Ni–Cu–Zn ferrite nanoparticles. Appl Phys Lett 2012, 100: 042407.CrossRefGoogle Scholar
  2. [2]
    Dimri MC, Kashyap SC, Dube DC, et al. Complex permittivity and permeability of Co-substituted NiCuZn ferrite at rf and microwave frequencies. J Electroceram 2006, 16: 331–335.CrossRefGoogle Scholar
  3. [3]
    Wu CP, Tung MJ, Ko WS, et al. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite. Physica B 2015, 476: 137–140.CrossRefGoogle Scholar
  4. [4]
    Rahman KR, Chowdhury F-U-Z, Khan MNI. Structural, morphological and magnetic properties of Al3+ substituted Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction route. Results in Physics 2017, 7: 354–360.CrossRefGoogle Scholar
  5. [5]
    Mohit K, Gupta VR, Rout SK. Microwave dielectric properties of Ni0.2CuxZn0.8–xFe2O4 for application in antenna. Prog Electromagn Res B 2014, 57: 157–175.CrossRefGoogle Scholar
  6. [6]
    Naidu KCB, Madhuri W. Microwave processed NiMg ferrite: Studies on structural and magnetic properties. J Magn Magn Mater 2016, 420: 109–116.CrossRefGoogle Scholar
  7. [7]
    Varalaxmi N, Sivakumar KV. Structural and dielectric studies of magnesium substituted NiCuZn ferrites for microinductor applications. Mat Sci Eng B 2014, 184: 88–97.CrossRefGoogle Scholar
  8. [8]
    Gairola SP, Verma V, Pandey V, et al. Modified composition of cobalt ferrite as microwave absorber in X-band frequencies. Integrated Ferroelectrics 2010, 119: 151–156.CrossRefGoogle Scholar
  9. [9]
    Nie Y, He H, Zhao Z, et al. Preparation, surface modification and microwave characterization of magnetic iron fibers. J Magn Magn Mater 2006, 306: 125–129.CrossRefGoogle Scholar
  10. [10]
    Matsumoto M, Miyata Y. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles. IEEE T Magn 1997, 33: 4459–4464.CrossRefGoogle Scholar
  11. [11]
    Deng L, Hagley EW, Kozuma M, et al. Achieving very- low-loss group velocity reduction without electromagnetically induced transparency. Appl Phys Lett 2002, 81: 1168.CrossRefGoogle Scholar
  12. [12]
    Hwang Y. Microwave absorbing properties of NiZn–ferrite synthesized from waste iron oxide catalyst. Mater Lett 2006, 60: 3277–3280.CrossRefGoogle Scholar
  13. [13]
    Su H, Zhang H, Tang X, et al. Study on low-temperature sintered NiCuZn and MgCuZn spinel ferrites. J Alloys Compd 2009, 475: 683–685.CrossRefGoogle Scholar
  14. [14]
    Daigle A, Modest J, Geiler AL, et al. Structure, morphology and magnetic properties of Mg(x)Zn(1-x)Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: A low-toxicity alternative to Ni(x)Zn(1-x)Fe2O4 ferrites. Nanotechnology 2011, 22: 305708.CrossRefGoogle Scholar
  15. [15]
    Rezlescu E, Rezlescu N, Popa PD, et al. Effect of copper oxide content on intrinsic properties of MgCuZn ferrite. Mater Res Bull 1998, 33: 915–925.CrossRefGoogle Scholar
  16. [16]
    Qi X, Zhou J, Yue Z, et al. Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J Magn Magn Mater 2002, 251: 316–322.CrossRefGoogle Scholar
  17. [17]
    Xia A, Zuo C, Chen L, et al. Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties. J Magn Magn Mater 2013, 332: 186–191.CrossRefGoogle Scholar
  18. [18]
    Yang H, Zhang X, Ao W, et al. Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater Res Bull 2004, 39: 833–837.CrossRefGoogle Scholar
  19. [19]
    Reddy MP, Madhuri W, Balakrishnaiah G, et al. Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr Appl Phys 2011, 11: 191–198.CrossRefGoogle Scholar
  20. [20]
    Mahmood A, Warsi MF, Ashiq MN, et al. Substitution of La and Fe with Dy and Mn in multiferroic La1-xDyxFe1-yMnyO3 nanocrystallites. J Magn Magn Mater 2013, 327: 64–70.CrossRefGoogle Scholar
  21. [21]
    Patil KC, Hegde MS, Aruna ST. Chemistry of Nanocrystalline Oxide Materials. World Scientific, 2008: 364.CrossRefGoogle Scholar
  22. [22]
    Khandekar MS, Kambale RC, Latthe SS, et al. Role of fuels on intrinsic and extrinsic properties of CoFe2O4 synthesized by combustion method. Mater Lett 2011, 65: 2972–2974.CrossRefGoogle Scholar
  23. [23]
    Ghodake UR, Chaudhari ND, Kambale RC, et al. Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J Magn Magn Mater 2016, 407: 60–68.CrossRefGoogle Scholar
  24. [24]
    Bhosale DN, Verenkar VMS, Rane KS, et al. Initial susceptibility studies on Cu–Mg–Zn ferrites. Mater Chem Phys 1999, 59: 57–62.CrossRefGoogle Scholar
  25. [25]
    Reddy MP, Kim IG, Yoo DS, et al. Effect of La substitution on structural and magnetic properties of microwave treated Mg0.35Cu0.05Zn0.60LaxFe2-xO4 ceramics. Superlattice Microst 2013, 56: 99–106.CrossRefGoogle Scholar
  26. [26]
    Haque MM, Huq M, Hakim MA. Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J Magn Magn Mater 2008, 320: 2792–2799.CrossRefGoogle Scholar
  27. [27]
    Sujatha Ch, Reddy KV, Babu KS, et al. Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceram Int 2012, 38: 5813–5820.CrossRefGoogle Scholar
  28. [28]
    Wagner KW. Zur Theorie der unvollkommenen Dielektrika. Annalen der Physik 1913, 40: 817–855.CrossRefGoogle Scholar
  29. [29]
    Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 1951, 83: 121.CrossRefGoogle Scholar
  30. [30]
    Sindhu S, Anantharaman MR, Thampi BP, et al. Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull Mater Sci 2002, 25: 599–607.Google Scholar
  31. [31]
    Ahmed MA, Bishay ST. The role of Dy3+ ions and sintering temperature on the magnetic characterization of LiCo–ferrite. J Magn Magn Mater 2004, 279: 178–183.CrossRefGoogle Scholar
  32. [32]
    Nikumbhn AK, Pawar RA, Nighot DV, et al. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 2014, 355: 201–209.CrossRefGoogle Scholar
  33. [33]
    Globus A. J Phys (Paris) Colloq 1977, 1: C–1.Google Scholar
  34. [34]
    Hashim M, Alimuddin, Shirsath SE, et al. Influence of Ni2+ substitution on the structural, dielectric and magnetic properties of Cu–Cd ferrite nanoparticles. J Alloys Compd 2013, 573: 198–204.CrossRefGoogle Scholar
  35. [35]
    Nam J-H, Han W-G, Oh J-H. The effect of Mn substitution on the properties of NiCuZn ferrites. J Appl Phys 1997, 81: 4794.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • L. M. Thorat
    • 1
  • J. Y. Patil
    • 2
  • D. Y. Nadargi
    • 2
  • U. R. Ghodake
    • 3
  • R. C. Kambale
    • 4
  • S. S. Suryavanshi
    • 2
    Email author
  1. 1.Department of ElectronicsS. M. Dnyandeo Mohekar MahavidyalayaKalambIndia
  2. 2.School of Physical SciencesSolapur UniversityKegaon, SolapurIndia
  3. 3.Department of ElectronicsShri Shivaji MahavidyalayaBarshi, SolapurIndia
  4. 4.Department of PhysicsSavitribai Phule Pune UniversityGaneshkhind, PuneIndia

Personalised recommendations