Advertisement

GWAS and Beyond: Using Omics Approaches to Interpret SNP Associations

  • Hung-Hsin Chen
  • Lauren E. Petty
  • William Bush
  • Adam C. Naj
  • Jennifer E. BelowEmail author
Neurogenetics and Psychiatric Genetics (C Cruchaga and C Karch, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Neurogenetics and Psychiatric Genetics

Abstract

Purpose of Review

Neurodegenerative diseases, neuropsychiatric disorders, and related traits have highly complex etiologies but are also highly heritable; identifying the causal genes and biological pathways underlying these traits may advance the development of treatments and preventive strategies. While many genome-wide association studies (GWAS) have successfully identified variants contributing to polygenic neurodegenerative and neuropsychiatric phenotypes including Alzheimer’s disease (AD), schizophrenia (SCZ), and bipolar disorder (BPD) among others, interpreting the biological roles of significantly associated variants in the genetic architecture of these traits remains a significant challenge. Here, we review several ‘omics’ approaches which attempt to bridge the gap from associated genetic variants to phenotype by helping define the functional roles of GWAS loci in the development of neuropsychiatric disorders and traits.

Recent Findings

Several common ‘omics’ approaches have been applied to examine neuropsychiatric traits, such as nearest-gene mapping, trans-ethnic fine mapping, annotation enrichment analysis, transcriptomic analysis, and pathway analysis, and each of these approaches has strengths and limitations in providing insight into biological mechanisms. One popular emerging method is the examination of tissue-specific genetically regulated gene expression (GReX), which aggregates the genetic variants’ effects at the gene level. Furthermore, proteomic, metabolomic, and microbiomic studies and phenome-wide association studies will further enhance our understanding of neuropsychiatric traits.

Summary

GWAS has been applied to neuropsychiatric traits for a decade, but our understanding about the biological function of identified variants remains limited. Today, technological advancements have created analytical approaches for integrating transcriptomics, metabolomics, proteomics, pharmacology, and toxicology as tools for understanding the functional roles of genetic variants. These data, as well as the broader clinical information provided by electronic health records, can provide additional insight and complement genomic analyses.

Keywords

Omics Genome-wide association studies Genetically regulated expression Functional interpretation Functional annotation 

Notes

Funding

W. Bush reports grants from NIH/HIA U54 AG052427, A.C. Naj reports grants R01 AG054060 and U01 AG032984, and H-H. Chen, L.E. Petty, W, Bush, A.C. Naj, and J.E. Below are supported by R01AG061351.

Compliance with Ethical Standards

Conflict of Interest

Hung-Hsin Chen, Lauren E. Petty, William Bush, Adam C. Naj, and Jennifer E. Below each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51.  https://doi.org/10.1038/nrg3240.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Heritability of schizophrenia and schizophrenia Spectrum based on the Nationwide Danish twin register. Biol Psychiatry. 2018;83(6):492–8.  https://doi.org/10.1016/j.biopsych.2017.08.017.CrossRefPubMedGoogle Scholar
  3. 3.
    Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967;58(1):199–205.CrossRefGoogle Scholar
  4. 4.
    Bush WS, Moore JH. Chapter 11: genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822.  https://doi.org/10.1371/journal.pcbi.1002822.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.  https://doi.org/10.1038/nature13595.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    •• Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668–81.  https://doi.org/10.1038/s41588-018-0090-3. This genome-wide analysis of major depressive disorder is notable due to its size and discovery of 44 independent, significant loci. Powered by a sample size of nearly 500,000 cases and controls, the authors explored patterns of causality between observed relationships between genetic risk factors for major depressive disorder and numerous co-morbidities, including obesity risk, lower educational attainment, and schizophrenia.
  7. 7.
    Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856–60.  https://doi.org/10.1038/ng.3314.CrossRefPubMedGoogle Scholar
  8. 8.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.  https://doi.org/10.1126/science.1222794.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Witte JS. Genome-wide association studies and beyond. Annu Rev Public Health. 2010;31:9–20 4 p following.  https://doi.org/10.1146/annurev.publhealth.012809.103723.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5.  https://doi.org/10.1038/nature13138.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.  https://doi.org/10.1126/science.1141634.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.  https://doi.org/10.1038/nature06885.CrossRefPubMedGoogle Scholar
  13. 13.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14(7):483–95.  https://doi.org/10.1038/nrg3461.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, et al. Using the transcriptome to annotate the genome. Nat Biotechnol. 2002;20(5):508–12.  https://doi.org/10.1038/nbt0502-508.CrossRefGoogle Scholar
  15. 15.
    Liu D, Ray B, Neavin DR, Zhang J, Athreya AP, Biernacka JM, et al. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry. 2018;8(1):10.  https://doi.org/10.1038/s41398-017-0056-8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347(6222):664–7.  https://doi.org/10.1126/science.1260793.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, et al. Variation and genetic control of protein abundance in humans. Nature. 2013;499(7456):79–82.  https://doi.org/10.1038/nature12223.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wist AD, Berger SI, Iyengar R. Systems pharmacology and genome medicine: a future perspective. Genome Med. 2009;1(1):11.  https://doi.org/10.1186/gm11.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet. 2004;5(12):936–48.  https://doi.org/10.1038/nrg1493.CrossRefPubMedGoogle Scholar
  20. 20.
    Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet. 2011;12(6):417–28.  https://doi.org/10.1038/nrg2999.CrossRefPubMedGoogle Scholar
  21. 21.
    Rastegar-Mojarad M, Ye Z, Kolesar JM, Hebbring SJ, Lin SM. Opportunities for drug repositioning from phenome-wide association studies. Nat Biotechnol. 2015;33(4):342–5.  https://doi.org/10.1038/nbt.3183.CrossRefPubMedGoogle Scholar
  22. 22.
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.CrossRefGoogle Scholar
  23. 23.
    Schoof N, Iles MM, Bishop DT, Newton-Bishop JA, Barrett JH, Consortium G. Pathway-based analysis of a melanoma genome-wide association study: analysis of genes related to tumour-immunosuppression. PLoS One. 2011;6(12):e29451.  https://doi.org/10.1371/journal.pone.0029451.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet. 2007;81(6):1278–83.  https://doi.org/10.1086/522374.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    •• Brodie A, Azaria JR, Ofran Y. How far from the SNP may the causative genes be? Nucleic Acids Res. 2016;44(13):6046–54.  https://doi.org/10.1093/nar/gkw500. This paper examined the distance between GWAS-identified loci and a pathway-based proposed causal gene, suggesting that the causal gene may often not be the one closest to the identified variant.
  26. 26.
    Yang F, Wang J, GTEx Consortium, Pierce BL, Chen LS. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis. Genome Res. 2017;27(11):1859–71.  https://doi.org/10.1101/gr.216754.116.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    •• Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7.  https://doi.org/10.1038/ng.3538. This paper combines GWAS and eQTL study results to explain previous findings from GWAS, the authors proposed a method for application to future GWAS.
  28. 28.
    Lam M, Chen C-Y, Li Z, Martin A, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. bioRxiv. 2018.  https://doi.org/10.1101/445874.
  29. 29.
    Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement. 2017;13(7):727–38.  https://doi.org/10.1016/j.jalz.2016.12.012.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.  https://doi.org/10.1038/ng.2653.CrossRefGoogle Scholar
  31. 31.
    •• Gamazon ER, Segre AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet. 2018;50(7):956–67.  https://doi.org/10.1038/s41588-018-0154-4. This paper is an application for GTEx data. The authors stated the majority of previous GWAS identified loci are in linked with cis-eQTL, and the eQTL both enriched for traits associated and explained major proportion of heritability.
  32. 32.
    • GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13.  https://doi.org/10.1038/nature24277. This is the GTEx V6p paper. They describe sample acquisition, preparation, and sequencing methods.
  33. 33.
    Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1620):20120362.  https://doi.org/10.1098/rstb.2012.0362.CrossRefGoogle Scholar
  34. 34.
    Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888.  https://doi.org/10.1371/journal.pgen.1000888.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Allen M, Kachadoorian M, Carrasquillo MM, Karhade A, Manly L, Burgess JD, et al. Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol Genet. 2015;1(2):e15.  https://doi.org/10.1212/NXG.0000000000000012.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    de Jong S, van Eijk KR, Zeegers DW, Strengman E, Janson E, Veldink JH, et al. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet. 2012;20(9):1004–8.  https://doi.org/10.1038/ejhg.2012.38.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.  https://doi.org/10.1371/journal.pgen.1004383.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature. 2008;452(7186):423–8.  https://doi.org/10.1038/nature06758.CrossRefPubMedGoogle Scholar
  39. 39.
    Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol. 2010;6(5):e1000770.  https://doi.org/10.1371/journal.pcbi.1000770.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Horwitz T, Lam K, Chen Y, Xia Y, Liu C. A decade in psychiatric GWAS research. Mol Psychiatry. 2018.  https://doi.org/10.1038/s41380-018-0055-z.
  41. 41.
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 2017;45(D1):D896–901.  https://doi.org/10.1093/nar/gkw1133.CrossRefPubMedGoogle Scholar
  42. 42.
    Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2018;47:D590–5.  https://doi.org/10.1093/nar/gky962.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–D8.  https://doi.org/10.1093/nar/gkw1108.CrossRefGoogle Scholar
  44. 44.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25(1):25–9.  https://doi.org/10.1038/75556.CrossRefGoogle Scholar
  45. 45.
    Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691–7.  https://doi.org/10.1093/nar/gkq1018.CrossRefGoogle Scholar
  46. 46.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.  https://doi.org/10.1073/pnas.0506580102.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ramanan VK, Kim S, Holohan K, Shen L, Nho K, Risacher SL, et al. Genome-wide pathway analysis of memory impairment in the Alzheimer's disease neuroimaging initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging Behav. 2012;6(4):634–48.  https://doi.org/10.1007/s11682-012-9196-x.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hu YS, Xin J, Hu Y, Zhang L, Wang J. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach. Alzheimers Res Ther. 2017;9(1):29.  https://doi.org/10.1186/s13195-017-0252-z.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu C, Bousman CA, Pantelis C, Skafidas E, Zhang D, Yue W, et al. Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry. 2017;7(2):e1037.  https://doi.org/10.1038/tp.2017.8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010;122(1–3):38–42.  https://doi.org/10.1016/j.schres.2010.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nurnberger JI Jr, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I, et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry. 2014;71(6):657–64.  https://doi.org/10.1001/jamapsychiatry.2014.176.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Karchin R. Next generation tools for the annotation of human SNPs. Brief Bioinform. 2009;10(1):35–52.  https://doi.org/10.1093/bib/bbn047.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.  https://doi.org/10.1093/nar/gkq603.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.  https://doi.org/10.4161/fly.19695.CrossRefGoogle Scholar
  55. 55.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.  https://doi.org/10.1038/nature08250.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37(3):235–41.  https://doi.org/10.1002/humu.22932.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang Y, Thompson WK, Schork AJ, Holland D, Chen CH, Bettella F, et al. Leveraging genomic annotations and pleiotropic enrichment for improved replication rates in schizophrenia GWAS. PLoS Genet. 2016;12(1):e1005803.  https://doi.org/10.1371/journal.pgen.1005803.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bryzgalov LO, Korbolina EE, Brusentsov II, Leberfarb EY, Bondar NP, Merkulova TI. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neurosci. 2018;19(Suppl 1):22.  https://doi.org/10.1186/s12868-018-0414-3.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Butkiewicz M, Blue EE, Leung YY, Jian X, Marcora E, Renton AE, et al. Functional annotation of genomic variants in studies of late-onset Alzheimer's disease. Bioinformatics. 2018;34(16):2724–31.  https://doi.org/10.1093/bioinformatics/bty177.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Huang CC, Fornage M, Lloyd-Jones DM, Wei GS, Boerwinkle E, Liu K. Longitudinal association of PCSK9 sequence variations with low-density lipoprotein cholesterol levels: the coronary artery risk development in young adults study. Circ Cardiovasc Genet. 2009;2(4):354–61.  https://doi.org/10.1161/CIRCGENETICS.108.828467.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Isik Z, Baldow C, Cannistraci CV, Schroeder M. Drug target prioritization by perturbed gene expression and network information. Sci Rep. 2015;5:17417.  https://doi.org/10.1038/srep17417.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47(9):1091–8.  https://doi.org/10.1038/ng.3367.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    • Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52.  https://doi.org/10.1038/ng.3506. This is one of the first large-scale applications of TWAS and demonstrates the potential of GReX methods to enhance understanding of the functional importance of GWAS loci. It also expands on potential applications of GReX itself, examining association of GReX with chromatin traits.
  64. 64.
    Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.CrossRefGoogle Scholar
  65. 65.
    Wheeler HE, Shah KP, Brenner J, Garcia T, Aquino-Michaels K, Consortium GT, et al. Survey of the heritability and sparse architecture of gene expression traits across human tissues. PLoS Genet. 2016;12(11):e1006423.  https://doi.org/10.1371/journal.pgen.1006423.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fish AE, Capra JA, Bush WS. Are interactions between cis-regulatory variants evidence for biological epistasis or statistical artifacts? Am J Hum Genet. 2016;99(4):817–30.  https://doi.org/10.1016/j.ajhg.2016.07.022.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles D, Golan D, et al. Transcriptome-wide association studies: opportunities and challenges. bioRxiv. 2018.  https://doi.org/10.1101/206961.
  68. 68.
    Ferreira MA, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet. 2017;49(12):1752–7.  https://doi.org/10.1038/ng.3985.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ip HF, Jansen R, Abdellaoui A, Bartels M, Consortium UKBE, Boomsma DI, et al. Characterizing the relation between expression QTLs and complex traits: exploring the role of tissue specificity. Behav Genet. 2018;48(5):374–85.  https://doi.org/10.1007/s10519-018-9914-2.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM et al. A statistical framework for cross-tissue transcriptome-wide association analysis. bioRxiv. 2018:286013. doi: https://doi.org/10.1101/286013.
  71. 71.
    Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50(4):538–48.  https://doi.org/10.1038/s41588-018-0092-1.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lam M, Trampush JW, Yu J, Knowles E, Davies G, Liewald DC, et al. Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets. Cell Rep. 2017;21(9):2597–613.  https://doi.org/10.1016/j.celrep.2017.11.028.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pasman JA, Verweij KJH, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL, et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci. 2018;21(9):1161–70.  https://doi.org/10.1038/s41593-018-0206-1.CrossRefPubMedGoogle Scholar
  74. 74.
    Huckins L, Dobbyn A, McFadden W, Wang W, Ruderfer D, Hoffman G, et al. Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated genes. bioRxiv. 2017.  https://doi.org/10.1101/222786.
  75. 75.
    Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 2012;30(3):271–7.  https://doi.org/10.1038/nbt.2137.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 2012;30(3):265–70.  https://doi.org/10.1038/nbt.2136.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Inoue F, Ahituv N. Decoding enhancers using massively parallel reporter assays. Genomics. 2015;106(3):159–64.  https://doi.org/10.1016/j.ygeno.2015.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–7.  https://doi.org/10.1038/nature13319.CrossRefPubMedGoogle Scholar
  79. 79.
    Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357.  https://doi.org/10.1038/ncomms14357.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH, et al. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genet. 2016;9:5.  https://doi.org/10.1186/s12920-016-0164-y.CrossRefGoogle Scholar
  81. 81.
    Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50.  https://doi.org/10.1038/ng.2982.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Quinones MP, Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis. 2009;35(2):165–76.  https://doi.org/10.1016/j.nbd.2009.02.019.CrossRefPubMedGoogle Scholar
  83. 83.
    Crettol S, de Leon J, Hiemke C, Eap CB. Pharmacogenomics in psychiatry: from therapeutic drug monitoring to genomic medicine. Clin Pharmacol Ther. 2014;95(3):254–7.  https://doi.org/10.1038/clpt.2013.221.CrossRefPubMedGoogle Scholar
  84. 84.
    Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12.  https://doi.org/10.1016/j.bbi.2013.12.015.CrossRefPubMedGoogle Scholar
  85. 85.
    Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017;87:23–9.  https://doi.org/10.1016/j.jpsychires.2016.12.007.CrossRefPubMedGoogle Scholar
  86. 86.
    Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–43.  https://doi.org/10.1016/j.chom.2016.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y. Genome-wide association studies of the human gut microbiota. PLoS One. 2015;10(11):e0140301.  https://doi.org/10.1371/journal.pone.0140301.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.  https://doi.org/10.1186/s13059-015-0759-1.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.  https://doi.org/10.1038/nature14177.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12(1):R10.  https://doi.org/10.1186/gb-2011-12-1-r10.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    • Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19(1):40–7.  https://doi.org/10.1038/nn.4181. The authors demonstrate the importance of epigenetic factors in regulation of gene expression in schizophrenia and significant overlap with GWAS signals.
  92. 92.
    • Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci. 2016;19(1):48–54.  https://doi.org/10.1038/nn.4182. As in Jaffe et al., this paper highlights the role of methylation QTLs in neuropsychiatric pathogenesis.
  93. 93.
    De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, et al. Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 2014;17(9):1156–63.  https://doi.org/10.1038/nn.3786.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.  https://doi.org/10.1056/NEJMp1500523.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet. 2016;17(3):129–45.  https://doi.org/10.1038/nrg.2015.36.CrossRefPubMedGoogle Scholar
  96. 96.
    McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genet. 2011;4:13.  https://doi.org/10.1186/1755-8794-4-13.CrossRefGoogle Scholar
  97. 97.
    Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, Pulley JM, et al. Identification of genomic predictors of atrioventricular conduction: using electronic medical records as a tool for genome science. Circulation. 2010;122(20):2016–21.  https://doi.org/10.1161/CIRCULATIONAHA.110.948828.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ritchie MD, Denny JC, Zuvich RL, Crawford DC, Schildcrout JS, Bastarache L, et al. Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation. 2013;127(13):1377–85.  https://doi.org/10.1161/CIRCULATIONAHA.112.000604.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, Carrell DS, et al. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol Vis. 2014;20:1281–95.PubMedPubMedCentralGoogle Scholar
  100. 100.
    McDavid A, Crane PK, Newton KM, Crosslin DR, McCormick W, Weston N, et al. Enhancing the power of genetic association studies through the use of silver standard cases derived from electronic medical records. PLoS One. 2013;8(6):e63481.  https://doi.org/10.1371/journal.pone.0063481.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Turner SD, Berg RL, Linneman JG, Peissig PL, Crawford DC, Denny JC, et al. Knowledge-driven multi-locus analysis reveals gene-gene interactions influencing HDL cholesterol level in two independent EMR-linked biobanks. PLoS One. 2011;6(5):e19586.  https://doi.org/10.1371/journal.pone.0019586.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG. Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med Inform Assoc. 2010;17(5):568–74.  https://doi.org/10.1136/jamia.2010.004366.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, Armstrong LL, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2012;19(2):212–8.  https://doi.org/10.1136/amiajnl-2011-000439.CrossRefPubMedGoogle Scholar
  104. 104.
    Logue MW, Panizzon MS, Elman JA, Gillespie NA, Hatton SN, Gustavson DE, et al. Use of an Alzheimer's disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Mol Psychiatry. 2018.  https://doi.org/10.1038/s41380-018-0030-8.
  105. 105.
    Milaneschi Y, Lamers F, Peyrot WJ, Abdellaoui A, Willemsen G, Hottenga JJ, et al. Polygenic dissection of major depression clinical heterogeneity. Mol Psychiatry. 2016;21(4):516–22.  https://doi.org/10.1038/mp.2015.86.CrossRefPubMedGoogle Scholar
  106. 106.
    Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K, Belliveau RA, et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry. 2017;7(1):e993.  https://doi.org/10.1038/tp.2016.242.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;20(8):1052–61.  https://doi.org/10.1038/nn.4587.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Brouwers N, Van Cauwenberghe C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N, et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 2012;17(2):223–33.  https://doi.org/10.1038/mp.2011.24.CrossRefPubMedGoogle Scholar
  109. 109.
    Mahmoudi R, Kisserli A, Novella JL, Donvito B, Drame M, Reveil B, et al. Alzheimer's disease is associated with low density of the long CR1 isoform. Neurobiol Aging. 2015;36(4):1766 e5- e12.  https://doi.org/10.1016/j.neurobiolaging.2015.01.006.CrossRefPubMedGoogle Scholar
  110. 110.
    Karch CM, Ezerskiy LA, Bertelsen S, Alzheimer's Disease Genetics Consortium, Goate AM. Alzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci. PLoS One. 2016;11(2):e0148717.  https://doi.org/10.1371/journal.pone.0148717.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al. Parkinson's disease genetics: identifying novel risk loci, providing causal insights and improving estimates of heritable risk. 2018:388165.  https://doi.org/10.1101/388165 bioRxiv.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hung-Hsin Chen
    • 1
  • Lauren E. Petty
    • 1
  • William Bush
    • 2
  • Adam C. Naj
    • 3
  • Jennifer E. Below
    • 1
    Email author
  1. 1.Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Population and Quantitative Health Sciences, School of MedicineInstitute for Computational Biology, Case Western Reserve UniversityClevelandUSA
  3. 3.Department of Biostatistics, Epidemiology, and Informatics; Department of Pathology and Laboratory Medicine; Center for Clinical Epidemiology and Biostatistics; Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations