Advertisement

Current Genetic Medicine Reports

, Volume 6, Issue 3, pp 124–131 | Cite as

Genetic and Epigenetic Regulations of Post-prandial Lipemia

  • Huichun Xu
Cardiovascular Genetics (B Mitchell, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cardiovascular Genetics

Abstract

Purpose of Review

Post-prandial lipemia (PPL), characterized by elevated levels of triglyceride (TG) following a meal, is an independent risk factor for cardiovascular disease. This review summarizes current knowledge on the genetic and epigenetic determinants of the PPL TG response and provides perspectives on future directions.

Recent Findings

Recent studies suggested that PPL-related traits have heritability between 38 and 80%. Genomics studies identified genetic variants in or near APOA1/C3/A4/A5 cluster region affecting PPL TG levels. Epigenomics studies found DNA methylation levels of many genes known to be related to lipid metabolism including CPT1A gene are associated with fasting TG and PPL TG.

Summary

Both genetic polymorphisms and epigenetic modifications are important determinants of PPL variation. Epigenetics may have even more significant impact than genetic variants on PPL. Further studies with multi-omics system biology approach are needed to fully elucidate the mechanisms of PPL regulation to combat the atherogenic effect of PPL.

Keywords

Post-prandial lipemia Triglyceride GWAS EWAS Genetics Epigenetics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Xu declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal studies performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Toth PP. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manag. 2016;12:171–83.  https://doi.org/10.2147/VHRM.S104369.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boren J, Matikainen N, Adiels M, Taskinen MR. Postprandial hypertriglyceridemia as a coronary risk factor. Clin Chim Acta. 2014;431:131–42.  https://doi.org/10.1016/j.cca.2014.01.015.CrossRefPubMedGoogle Scholar
  3. 3.
    Skretteberg PT, Grytten AN, Gjertsen K, Grundvold I, Kjeldsen SE, Erikssen J, et al. Triglycerides-diabetes association in healthy middle-aged men: modified by physical fitness? A long term follow-up of 1962 Norwegian men in the Oslo Ischemia Study. Diabetes Res Clin Pract. 2013;101(2):201–9.  https://doi.org/10.1016/j.diabres.2013.06.001.CrossRefPubMedGoogle Scholar
  4. 4.
    Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45(11):1345–52.  https://doi.org/10.1038/ng.2795.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015;36(9):539–50.  https://doi.org/10.1093/eurheartj/eht571.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomsen M, Varbo A, Tybjaerg-Hansen A, Nordestgaard BG. Low nonfasting triglycerides and reduced all-cause mortality: a mendelian randomization study. Clin Chem. 2014;60(5):737–46.  https://doi.org/10.1373/clinchem.2013.219881.CrossRefPubMedGoogle Scholar
  7. 7.
    Carroll M, Kit B, Lacher D. Trends in elevated triglyceride in adults: United States, 2001–2012. NCHS Data Brief. 2015;198:198.Google Scholar
  8. 8.
    Alcala-Diaz JF, Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Marin C, Quintana-Navarro GM, et al. Hypertriglyceridemia influences the degree of postprandial lipemic response in patients with metabolic syndrome and coronary artery disease: from the CORDIOPREV study. PloS One. 2014;9(5):e96297.  https://doi.org/10.1371/journal.pone.0096297.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wojczynski MK, Glasser SP, Oberman A, Kabagambe EK, Hopkins PN, Tsai MY, et al. High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): an interventional study. Lipids Health Dis. 2011;10:181.  https://doi.org/10.1186/1476-511X-10-181.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yunoki K, Nakamura K, Miyoshi T, Enko K, Kohno K, Morita H, et al. Ezetimibe improves postprandial hyperlipemia and its induced endothelial dysfunction. Atherosclerosis. 2011;217(2):486–91.  https://doi.org/10.1016/j.atherosclerosis.2011.04.019.CrossRefPubMedGoogle Scholar
  11. 11.
    Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;322(5908):1702–5.  https://doi.org/10.1126/science.1161524.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cohn JS, McNamara JR, Cohn SD, Ordovas JM, Schaefer EJ. Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res. 1988;29(4):469–79.PubMedGoogle Scholar
  13. 13.
    Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. J Vasc Res. 1992;12(11):1336–45.Google Scholar
  14. 14.
    Groot PH, van Stiphout WA, Krauss XH, Jansen H, van Tol A, van Ramshorst E, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. J Vasc Res.. 1991;11(3):653–62.Google Scholar
  15. 15.
    Meyer E, Westerveld HT, de Ruyter-Meijstek FC, van Greevenbroek MM, Rienks R, van Rijn HJ, et al. Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: a case-control study. Atherosclerosis. 1996;124(2):221–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Mero N, Malmstrom R, Steiner G, Taskinen MR, Syvanne M. Postprandial metabolism of apolipoprotein B-48- and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis. 2000;150(1):167–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Boquist S, Ruotolo G, Tang R, Bjorkegren J, Bond MG, de Faire U, et al. Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation. 1999;100(7):723–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Steiner G. Triglyceride-rich lipoproteins and atherosclerosis, from fast to feast. Ann Med. 1993;25(5):431–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Austin MA. Plasma triglyceride as a risk factor for cardiovascular disease. Can J Cardiol. 1998;14(Suppl B):14B–7B.PubMedGoogle Scholar
  20. 20.
    Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000;86(9):943–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16.  https://doi.org/10.1001/jama.298.3.309.CrossRefPubMedGoogle Scholar
  22. 22.
    Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36(4):382–7.  https://doi.org/10.1038/ng1329.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sanders TA. Dietary fat and postprandial lipids. Curr Atheroscler Rep. 2003;5(6):445–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Tholstrup T, Miller GJ, Bysted A, Sandstrom B. Effect of individual dietary fatty acids on postprandial activation of blood coagulation factor VII and fibrinolysis in healthy young men. Am J Clin Nutr. 2003;77(5):1125–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Duttaroy AK. Postprandial activation of hemostatic factors: role of dietary fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2005;72(6):381–91.  https://doi.org/10.1016/j.plefa.2005.03.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Lundman P, Boquist S, Samnegard A, Bennermo M, Held C, Ericsson CG, et al. A high-fat meal is accompanied by increased plasma interleukin-6 concentrations. Nutr Metab Cardiovasc Dis. 2007;17(3):195–202.  https://doi.org/10.1016/j.numecd.2005.11.009.CrossRefPubMedGoogle Scholar
  28. 28.
    Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39(7):1145–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res. 2014;58(1):136–46.  https://doi.org/10.1002/mnfr.201300104.CrossRefPubMedGoogle Scholar
  30. 30.
    • Emerson SR, Kurti SP, Harms CA, Haub MD, Melgarejo T, Logan C, et al. Magnitude and timing of the postprandial inflammatory response to a high-fat meal in healthy adults: a systematic review. Adv Nutr. 2017;8(2):213–25.  https://doi.org/10.3945/an.116.014431. This study conducted a systematic review on the post-prandial changes of five proinflammatory markers and their timing, which provided insights for further studies.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang F, Lu H, Liu F, Cai H, Song Z, Guo F, et al. Effects of a liquid high-fat meal on postprandial lipid metabolism in type 2 diabetic patients with abdominal obesity. Nutr Metab (Lond). 2017;14:54.  https://doi.org/10.1186/s12986-017-0211-5.CrossRefGoogle Scholar
  32. 32.
    Silva Correa C, Rebolledo Cobos RC, Reischak-Oliveira A. Strength exercise and training in postprandial lipaemia. J Sports Med Phys Fitness. 2015;55(9):1037–45.PubMedGoogle Scholar
  33. 33.
    Teeman CS, Kurti SP, Cull BJ, Emerson SR, Haub MD, Rosenkranz SK. Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (Lond). 2016;13:80.  https://doi.org/10.1186/s12986-016-0142-6.CrossRefGoogle Scholar
  34. 34.
    Schwarzova L, Hubacek JA, Vrablik M. Genetic predisposition of human plasma triglyceride concentrations. Physiol Res. 2015;64(Suppl 3):S341–54.PubMedGoogle Scholar
  35. 35.
    van Dongen J, Willemsen G, Chen WM, de Geus EJ, Boomsma DI. Heritability of metabolic syndrome traits in a large population-based sample. J Lipid Res. 2013;54(10):2914–23.  https://doi.org/10.1194/jlr.P041673.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rahman I, Bennet AM, Pedersen NL, de Faire U, Svensson P, Magnusson PK. Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Res Hum Genet. 2009;12(3):286–94.  https://doi.org/10.1375/twin.12.3.286.CrossRefPubMedGoogle Scholar
  37. 37.
    MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.  https://doi.org/10.1093/nar/gkw1133.CrossRefPubMedGoogle Scholar
  38. 38.
    Mitchell BD, McArdle PF, Shen H, Rampersaud E, Pollin TI, Bielak LF, et al. The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. Am Heart J. 2008;155(5):823–8.  https://doi.org/10.1016/j.ahj.2008.01.019.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    • Irvin MR, Zhi D, Aslibekyan S, Claas SA, Absher DM, Ordovas JM, et al. Genomics of post-prandial lipidomic phenotypes in the Genetics of Lipid lowering Drugs and Diet Network (GOLDN) study. PloS One. 2014;9(6):e99509.  https://doi.org/10.1371/journal.pone.0099509. This paper reported the GWAS and EWAS of 11 post-prandial sterols and 35 post-prandial fatty acids.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220(1):22–33.  https://doi.org/10.1016/j.atherosclerosis.2011.08.012.CrossRefPubMedGoogle Scholar
  41. 41.
    Perez-Martinez P, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Update on genetics of postprandial lipemia. Atheroscler Suppl. 2010;11(1):39–43.  https://doi.org/10.1016/j.atherosclerosissup.2010.03.002.CrossRefPubMedGoogle Scholar
  42. 42.
    •• Wojczynski MK, Parnell LD, Pollin TI, Lai CQ, Feitosa MF, O’Connell JR, et al. Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). Metabolism. 2015;64(10):1359–71.  https://doi.org/10.1016/j.metabol.2015.07.001. This study is one of the only two GWAS on PPL TG reported so far.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.  https://doi.org/10.1038/nature09270.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Aslibekyan S, Goodarzi MO, Frazier-Wood AC, Yan X, Irvin MR, Kim E, et al. Variants identified in a GWAS meta-analysis for blood lipids are associated with the lipid response to fenofibrate. PloS One. 2012;7(10):e48663.  https://doi.org/10.1371/journal.pone.0048663.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Parnell LD, Blokker BA, Dashti HS, Nesbeth PD, Cooper BE, Ma Y, et al. CardioGxE, a catalog of gene-environment interactions for cardiometabolic traits. BioData Min. 2014;7:21.  https://doi.org/10.1186/1756-0381-7-21.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet. 2012;5(2):242–9.  https://doi.org/10.1161/CIRCGENETICS.111.961482.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.  https://doi.org/10.1038/ng.784.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    • Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, et al. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation. 2014;130(7):565–72.  https://doi.org/10.1161/CIRCULATIONAHA.114.009158. This is the EWAS of fasting TG reported by the GOLDN study.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lewis GF, Xiao C, Hegele RA. Hypertriglyceridemia in the genomic era: a new paradigm. Endocr Rev. 2015;36(1):131–47.  https://doi.org/10.1210/er.2014-1062.CrossRefPubMedGoogle Scholar
  50. 50.
    Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.  https://doi.org/10.1038/ng.2797.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang KC, Chang HY. Epigenomics: technologies and applications. Circ Res. 2018;122(9):1191–9.  https://doi.org/10.1161/CIRCRESAHA.118.310998.CrossRefPubMedGoogle Scholar
  52. 52.
    Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G et al. Epigenetic mechanisms in coronary artery disease: the current state and prospects. Trends Cardiovasc Med. 2017.  https://doi.org/10.1016/j.tcm.2017.12.012.
  53. 53.
    Fernandez-Sanles A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review. Atherosclerosis. 2017;263:325–33.  https://doi.org/10.1016/j.atherosclerosis.2017.05.022.CrossRefPubMedGoogle Scholar
  54. 54.
    Zheng J, Cheng J, Zhang Q, Xiao X. Novel insights into DNA methylation and its critical implications in diabetic vascular complications. Biosci Rep. 2017;37(2).  https://doi.org/10.1042/BSR20160611.
  55. 55.
    Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis. 2013;228(2):346–52.  https://doi.org/10.1016/j.atherosclerosis.2013.01.027.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhuang J, Peng W, Li H, Wang W, Wei Y, Li W, et al. Methylation of p15INK4b and expression of ANRIL on chromosome 9p21 are associated with coronary artery disease. PloS One. 2012;7(10):e47193.  https://doi.org/10.1371/journal.pone.0047193.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    •• Lai CQ, Wojczynski MK, Parnell LD, Hidalgo BA, Irvin MR, Aslibekyan S, et al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res. 2016;57(12):2200–7.  https://doi.org/10.1194/jlr.M069948. This paper reported the first and the only EWAS of PPL TG performed in GOLDN study.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Truong V, Huang S, Dennis J, Lemire M, Zwingerman N, Aissi D, et al. Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci Rep. 2017;7(1):11207.  https://doi.org/10.1038/s41598-017-09552-z.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    • Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics. 2017;9:15.  https://doi.org/10.1186/s13148-016-0304-4. This is a recent EWAS of fasting TG.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    • Hedman AK, Mendelson MM, Marioni RE, Gustafsson S, Joehanes R, Irvin MR et al. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ Cardiovasc Genet. 2017;10(1).  https://doi.org/10.1161/CIRCGENETICS.116.001487. This is a recent EWAS of fasting TG.
  61. 61.
    • Sayols-Baixeras S, Subirana I, Lluis-Ganella C, Civeira F, Roquer J, Do AN, et al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet. 2016;25(20):4556–65.  https://doi.org/10.1093/hmg/ddw285. This is a recent EWAS of fasting TG.PubMedGoogle Scholar
  62. 62.
    • Dekkers KF, van Iterson M, Slieker RC, Moed MH, Bonder MJ, van Galen M, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17(1):138.  https://doi.org/10.1186/s13059-016-1000-6. This is a recent EWAS of fasting TG.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    • Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015;8(2):334–42.  https://doi.org/10.1161/CIRCGENETICS.114.000804. This is a recent EWAS of fasting TG.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.  https://doi.org/10.1016/j.cmet.2012.01.001.CrossRefPubMedGoogle Scholar
  65. 65.
    Robson-Ansley PJ, Saini A, Toms C, Ansley L, Walshe IH, Nimmo MA, et al. Dynamic changes in dna methylation status in peripheral blood Mononuclear cells following an acute bout of exercise: potential impact of exercise-induced elevations in interleukin-6 concentration. J Biol Regul Homeost Agents. 2014;28(3):407–17.PubMedGoogle Scholar
  66. 66.
    Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekstrom TJ, Tegner J, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69.  https://doi.org/10.4161/15592294.2014.982445.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    de Mello VD, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res. 2012;56(7):1160–72.  https://doi.org/10.1002/mnfr.201100685.CrossRefPubMedGoogle Scholar
  68. 68.
    Tremblay BL, Guenard F, Rudkowska I, Lemieux S, Couture P, Vohl MC. Epigenetic changes in blood leukocytes following an omega-3 fatty acid supplementation. Clin Epigenetics. 2017;9:43.  https://doi.org/10.1186/s13148-017-0345-3.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Burdge GC, Lillycrop KA. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care. 2014;17(2):156–61.  https://doi.org/10.1097/MCO.0000000000000023.CrossRefPubMedGoogle Scholar
  70. 70.
    Birjmohun RS, Hutten BA, Kastelein JJ, Stroes ES. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2005;45(2):185–97.  https://doi.org/10.1016/j.jacc.2004.10.031.CrossRefPubMedGoogle Scholar
  71. 71.
    Kelly MS, Beavers C, Bucheit JD, Sisson EM, Dixon DL. Pharmacologic approaches for the management of patients with moderately elevated triglycerides (150–499 mg/dL). J Clin Lipidol. 2017;11(4):872–9.  https://doi.org/10.1016/j.jacl.2017.05.014.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations