Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Autoimmunity and Traumatic Brain Injury

  • 188 Accesses

  • 1 Citations

Abstract

Purpose of Review

Traumatic brain injury (TBI) causes injured brain cells to release brain-specific proteins, which may trigger an autoantibody response. In this review, we will discuss how autoimmunity is triggered after TBI and summarize the identified brain antigens to which an autoimmune response has been observed as well as their clinical implications.

Recent Findings

TBI leads injured brain cells to release brain proteins, in their intact or proteolytic fragment form, into extracellular fluids and eventually into circulating blood. These brain proteins treated by the immune system as foreign antigens can evoke the systemic production of both IgM and IgG isoforms. Increasing evidence shows that in a subset of TBI patients, there are circulating autoantibodies recognizing a range of brain proteins, including glial proteins like S100B, glial fibrillary acidic protein, and peroxirerdoxin; neuroreceptors such as glutamate receipt subunits NR1; and oligodendrocyte-originated myelin basic protein.

Summary

Autoimmunity is triggered in TBI, targeting a range of brain-specific antigens in a subset of TBI patients. Such autoantibodies might be useful for biofluid-based diagnosis in order to identify patients who might benefit from immunotherapy.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Schubert A, Emory L. Cellular mechanisms of brain injury and cell death. Curr Pharm Des. 2012;18(38):6325–30. doi:10.2174/138161212803832425.

  2. 2.

    Daneshvar DH, Goldstein LE, Kiernan PT, Stein TD, McKee AC. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci. 2015;66(Pt B):81–90. doi:10.1016/j.mcn.2015.03.007.

  3. 3.

    Yeoh S, Bell ED, Monson KL. Distribution of blood-brain barrier disruption in primary blast injury. Ann Biomed Eng. 2013;41(10):2206–14. doi:10.1007/s10439-013-0805-7.

  4. 4.

    Andrews AM, Lutton EM, Merkel SF, Razmpour R, Ramirez SH. Mechanical injury induces brain endothelial-derived microvesicle release: implications for cerebral vascular injury during traumatic brain injury. Front Cell Neurosci. 2016;10:43. doi:10.3389/fncel.2016.00043.

  5. 5.

    Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014;31(7):618–29. doi:10.1089/neu.2013.3087.

  6. 6.

    Su E, Bell MJ, Kochanek PM, Wisniewski SR, Bayır H, Clark RS, et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocriti Care. 2012;17(3):401–17. doi:10.1007/s12028-012-9767-0.

  7. 7.

    Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016;20:285. doi:10.1186/s13054-016-1450-y.

  8. 8.

    Mondello S, Kobeissy F, Vestri A, Hayes RL, Kochanek PM, Berger RP. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury. Sci Rep. 2016;6:28203. doi:10.1038/srep28203.

  9. 9.

    Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73(5):551–60. doi:10.1001/jamaneurol.2016.0039.

  10. 10.

    Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J, Matuchová I. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid—a normative study. Biomed Res Int. 2015;2015:379071. doi:10.1155/2015/379071.

  11. 11.

    Papa L, Robertson CS, Wang KK, Brophy GM, Hannay HJ, Heaton S, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22(1):52–64. doi:10.1007/s12028-014-0028-2.

  12. 12.

    Takala RS, Posti JP, Runtti H, Newcombe VF, Outtrim J, Katila AJ, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 2016;87:8–20. doi:10.1016/j.wneu.2015.10.066.

  13. 13.

    Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27(7):1203–13. doi:10.1089/neu.2010.1278.

  14. 14.

    Guaraldi F, Grottoli S, Arvat E, Ghigo E. Hypothalamic-pituitary autoimmunity and traumatic brain injury. J Clin Med. 2015;4(5):1025–35. doi:10.3390/jcm4051025.

  15. 15.

    Cox AL, Coles AJ, Nortje J, Bradley PG, Chatfield DA, Thompson SJ, et al. An investigation of auto-reactivity after head injury. J Neuroimmunol. 2006;174(1–2):180–6. doi:10.1016/j.jneuroim.2006.01.007.

  16. 16.

    Sorokina EG, Semenova ZB, Granstrem OK, Karaseva OV, Meshcheriakov SV, Reutov VP, et al. S100B protein and autoantibodies to S100B protein in diagnostics of brain damage in craniocerebral trauma in children. Zh Nevrol Psikhiatr Im S S Korsakova. 2010;110(8):30–5.

  17. 17.

    Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3):e92698. doi:10.1371/journal.pone.0092698.

  18. 18.

    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96. doi:10.1007/s00441-008-0658-9.

  19. 19.

    Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. doi:10.1038/nrn1824.

  20. 20.

    Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi:10.1016/j.nbd.2003.12.016.

  21. 21.

    Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30. doi:10.1089/neu.2009.1114.

  22. 22.

    Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57. doi:10.1097/NEN.0000000000000261.

  23. 23.

    Li W, Watts L, Long J, Zhou W, Shen Q, Jiang Z, et al. Spatiotemporal changes in blood-brain barrier permeability, cerebral blood flow, T2 and diffusion following mild traumatic brain injury. Brain Res. 2016;1646:53–61. doi:10.1016/j.brainres.2016.05.036.

  24. 24.

    Shen Q, Watts LT, Li W, Duong TQ. Magnetic resonance imaging in experimental traumatic brain injury. Methods Mol Biol. 2016;1462:645–58. doi:10.1007/978-1-4939-3816-2_35.

  25. 25.

    Wei XE, Zhang YZ, Li YH, Li MH, Li WB. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma. 2012;29(14):2413–20. doi:10.1089/neu.2010.1510.

  26. 26.

    Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014;31(13):1180–93. doi:10.1089/neu.2013.3080.

  27. 27.

    Saw MM, Chamberlain J, Barr M, Morgan MPG, Burnett JR, Ho KM. Differential disruption of blood–brain barrier in severe traumatic brain injury. Neurocriti Care. 2014;20(2):209–16. doi:10.1007/s12028-013-9933-z.

  28. 28.

    Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923. doi:10.1155/2011/765923.

  29. 29.

    Winte C, Bell C, Whyte T, Cardinal J, Macfrlane D, Rose S. Blood–brain barrier dysfunction following traumatic brain injury: correlation of Ktrans (DCE-MRI) and SUVR (99mTc-DTPA SPECT) but not serum S100B. Neurol Res. 2015;37(7):599–606. doi:10.1179/1743132815y.0000000018.

  30. 30.

    Zhang Z, Mondello S, Kobeissy F, Rubenstein R, Streeter J, Hayes RL, et al. Protein biomarkers for traumatic and ischemic brain injury: from bench to bedside. Transl Stroke Res. 2011;2(4):455–62. doi:10.1007/s12975-011-0137-6.

  31. 31.

    Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to Neurobiomarker. Trends Neurosci. 2015;38(6):364–74. doi:10.1016/j.tins.2015.04.003.

  32. 32.

    Martínez-Morillo E, Childs C, García BP, Álvarez Menéndez FV, Romaschin AD, Cervellin G, et al. Neurofilament medium polypeptide (NFM) protein concentration is increased in CSF and serum samples from patients with brain injury. Clin Chem Lab Med. 2015;53(10):1575–84. doi:10.1515/cclm-2014-0908.

  33. 33.

    Kavalci C, Pekdemir M, Durukan P, Ilhan N, Yildiz M, Serhatlioglu S, et al. The value of serum tau protein for the diagnosis of intracranial injury in minor head trauma. Am J Emerg Med. 2007;25(4):391–5. doi:10.1016/j.ajem.2006.10.008.

  34. 34.

    Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21(11):1553–61. doi:10.1089/neu.2004.21.1553.

  35. 35.

    Nylén K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240(1–2):85–91. doi:10.1016/j.jns.2005.09.007.

  36. 36.

    Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, et al. Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma. 2010;69(1):104–9. doi:10.1097/TA.0b013e3181bbd485.

  37. 37.

    Ankeny DP, Guan Z, Popovich PG. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest. 2009;119(10):2990–9. doi:10.1172/JCI39780.

  38. 38.

    Dekaban GA, Thawer S. Pathogenic antibodies are active participants in spinal cord injury. J Clin Invest. 2009;119(10):2881–4. doi:10.1172/JCI40839.

  39. 39.

    Ulndreaj A, Tzekou A, Mothe AJ, Siddiqui A, Dragas R, Tator C, et al. Characterization of the antibody response after cervical spinal cord injury. J Neurotrauma. 2016. doi:10.1089/neu.2016.4498.

  40. 40.

    Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569–77. doi:10.1016/j.it.2015.08.006.

  41. 41.

    Hedegaard CJ, Chen N, Sellebjerg F, Sørensen PS, Leslie RG, Bendtzen K, et al. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology. 2009;128(1 Suppl):e451–61. doi:10.1111/j.1365-2567.2008.02999.x.

  42. 42.

    Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, et al. Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol. 2016;7:23. doi:10.3389/fneur.2016.00023.eCollection2016.

  43. 43.

    Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31:345–85. doi:10.1146/annurev-immunol-020711-075041.

  44. 44.

    Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006;99(4):1073–87.

  45. 45.

    Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, et al. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg. 2015;83(5):867–78. doi:10.1016/j.wneu.2013.03.012.

  46. 46.

    Gee JM, Kalil A, Thullbery M, Becker KJ. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke. 2008;39(5):1575–82. doi:10.1161/STROKEAHA.107.501486.

  47. 47.

    Gruden MA, Davudova TB, Malisauskas M, Zamotin VV, Sewell RD, Voskresenskaya NI, et al. Autoimmune responses to amyloid structures of Abeta (25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement Geriatr Cogn Disord. 2004;18(2):165–71. doi:10.1159/000079197.

  48. 48.

    Mruthinti S, Buccafusco JJ, Hill WD, Waller JL, Jackson TW, Zamrini EY, et al. Autoimmunity in Alzheimer's disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging. 2004;25(8):1023–32. doi:10.1016/j.neurobiolaging.2003.11.001.

  49. 49.

    Tanriverdi F, De Bellis A, Ulutabanca H, Bizzarro A, Sinisi AA, Bellastella G, et al. A five year prospective investigation of anterior pituitary function after traumatic brain injury: is hypopituitarism long-term after head trauma associated with autoimmunity? J Neurotrauma. 2013;30(16):1426–33. doi:10.1089/neu.2012.2752.

  50. 50.

    Tanriverdi F, De Bellis A, Bizzarro A, Sinisi AA, Bellastella G, Pane E, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol. 2008;159(1):7–13. doi:10.1530/EJE-08-0050.

  51. 51.

    Tanriverdi F, Ulutabanca H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. Three years prospective investigation of anterior pituitary function after traumatic brain injury: a pilot study. Clin Endocrinol. 2008;68(4):573–9. doi:10.1111/j.1365-2265.2007.03070.x.

  52. 52.

    Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3):e56805. doi:10.1371/journal.pone.0056805.

  53. 53.

    Goryunova AV, Bazarnaya NA, Sorokina EG, Semenova NY, Globa OV, Semenova ZB, et al. Glutamate receptor autoantibody concentrations in children with chronic post-traumatic headache. Neurosci Behav Physiol. 2007;37(8):761–4. doi:10.1007/s11055-007-0079-3.

  54. 54.

    Buonora JE, Mousseau M, Jacobowitz DM, Lazarus RC, Yarnell AM, Olsen CH, et al. Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker. J Neurotrauma. 2015;32(22):1805–14. doi:10.1089/neu.2014.3736.

  55. 55.

    Ngankam L, Kazantseva NV. Immunological markers of severity and outcome of traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(7):61–5.

  56. 56.

    Wang KK, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio AM, et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma. 2016;33(13):1270–7. doi:10.1089/neu.2015.3881.

  57. 57.

    Weissman JD, Khunteev GA, Heath R, Dambinova SA. NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci. 2011;300(1–2):97–102. doi:10.1016/j.jns.2010.09.023.

  58. 58.

    Tanriverdi F, De Bellis A, Battaglia M, Bellastella G, Bizzarro A, Sinisi AA, et al. Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol. 2010;162(5):861–7. doi:10.1530/EJE-09-1024.

  59. 59.

    Smith CJ, Bensing S, Burns C, Robinson PJ, Kasperlik-Zaluska AA, Scott RJ, et al. Identification of TPIT and other novel autoantigens in lymphocytic hypophysitis: immunoscreening of a pituitary cDNA library and development of immunoprecipitation assays. Eur J Endocrinol. 2012;166(3):391–8. doi:10.1530/EJE-11-1015.

  60. 60.

    Guaraldi F, Caturegli P, Salvatori R. Prevalence of antipituitary antibodies in acromegaly. Pituitary. 2012;15(4):490–4. doi:10.1007/s11102-011-0355-7.

  61. 61.

    Caturegli P. Autoimmune hypophysitis: an underestimated disease in search of its autoantigen (S). J Clin Endocrinol Metab. 2007;92(6):2038–40. doi:10.1210/jc.2007-0808.

  62. 62.

    Pinelis VG, Sorokina EG, Semenova JB, Karaseva OV, Mescheryakov SV, Chernisheva TA, et al. Biomarkers in children with traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115(8):66–72.

  63. 63.

    Kalev-Zylinska ML, Symes W, Little KC, Sun P, Wen D, Qiao L, et al. Stroke patients develop antibodies that react with components of N-methyl-D-aspartate receptor subunit 1 in proportion to lesion size. Stroke. 2013;44(8):2212–9. doi:10.1161/STROKEAHA.113.001235.

  64. 64.

    Schwartz M, Raposo C. Protective autoimmunity: a unifying model for the immune network involved in CNS repair. Neuroscientist. 2014;20(4):343–58.

  65. 65.

    Walsh JT, Zheng J, Smirnov I, Lorenz U, Tung K, Kipnis J. Regulatory T cells in central nervous system injury: a double-edged sword. J Immunol. 2014;193(10):5013–22. doi:10.4049/jimmunol.1302401.

  66. 66.

    Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A. 2010;107(26):11993–8. doi:10.1073/pnas.1001948107.

  67. 67.

    Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46. doi:10.1038/nri2901.

  68. 68.

    Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010;10(11):778–86. doi:10.1038/nri2849.

  69. 69.

    Wright BR, Warrington AE, Edberg DD, Rodriguez M. Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol. 2009;66(12):1456–9. doi:10.1001/archneurol.2009.262.

  70. 70.

    Stein TD, Fedynyshyn JP, Kalil RE. Circulating autoantibodies recognize and bind dying neurons following injury to the brain. J Neuropathol Exp Neurol. 2002;61(12):1100–8.

  71. 71.

    Taylor S, Calder CJ, Albon J, Erichsen JT, Boulton ME, Morgan JE. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res. 2011;92(5):338–43.

  72. 72.

    Archelos JJ, Hartung HP. Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci. 2000;23(7):317–27.

  73. 73.

    Strait RT, Hicks W, Barasa N, Mahler A, Khodoun M, Köhl J, et al. MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice. J Exp Med. 2011;208(12):2525–44.

  74. 74.

    Ankeny DP, Popovich PG. B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. 2010;31(9):332–8.

  75. 75.

    Rich MC, Keene CN, Neher MD, Johnson K, Yu ZX, Ganivet A, et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci Lett. 2016;617:188–94. doi:10.1016/j.neulet.2016.02.025.

  76. 76.

    Ruseva MM, Ramaglia V, Morgan BP, Harris CL. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A. 2015;112(46):14319–24. doi:10.1073/pnas.1513698112.

  77. 77.

    Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir. 2011;153(1):90–100. doi:10.1007/s00701-010-0737-z.

  78. 78.

    Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–311. doi:10.1089/08977150152725605.

Download references

Acknowledgements

This study is supported in part by NIH R21NS085455-01 (K.K.W.), NIH 1U01 NS086090-01 (K.K.W. overall PI Geoff T. Manley-UCSF), U.S. DOD grant W81XWH-14-2-0176 (Co-POI, K.K.W., overall PI Geoff T. Manley).

Author information

Correspondence to Zhihui Yang or Kevin K. W. Wang.

Ethics declarations

Conflict of Interest

Kevin K.W. Wang is a shareholder with Banyan Biomarkers, Inc., and reports grants from the NIH and the US Department of Defense.

Zhihui Yang, Tian Zhu, Amenda S. Weissman, Emily Jaalouk, Disa S Rathore, Pammela Romo, Yuan Shi, and Amy K. Wagner declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Traumatic Brain Injury Rehabilitation

An erratum to this article is available at http://dx.doi.org/10.1007/s40141-017-0152-y.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhu, T., Weissman, A.S. et al. Autoimmunity and Traumatic Brain Injury. Curr Phys Med Rehabil Rep 5, 22–29 (2017). https://doi.org/10.1007/s40141-017-0146-9

Download citation

Keywords

  • Autoimmunity
  • Brain injury
  • Autoantibodies
  • Biomarker