Hypoxemia During One-Lung Ventilation: Does it Really Matter?

  • Ulrich LimperEmail author
  • Burkhard Hartmann
Thoracic Anesthesia (T Schilling, Section Editor)
Part of the following topical collections:
  1. Thoracic Anesthesia


Purpose of Review

The human system of oxygen transport and metabolism is complex, and appropriate means to follow its single steps intraoperatively do not exist. Intraoperative tissue hypoxia is one of the leading dangers for patients receiving one-lung ventilation (OLV). Pulmonary, cerebral, or cardiac injuries may be the result. To summarize the current knowledge about the tolerable human limits of hypoxia, inside and outside the thoracic surgery room, is the purpose of this review.

Recent Findings

High altitude mountaineers and apnea divers teach us that the healthy human body is able to acclimatize to and cope with severe hypoxemia to prevent fatal tissue hypoxia. The patients receiving OLV for thoracic surgery, however, are lacking adequate time for hypoxic acclimatization. Chronical medical conditions and effects of anesthesia prevent them further from exploiting their full hypoxia defense capacity. Controlled outcome studies on hypoxemia during OLV do not exist.


Patients are no mountaineers. Thus, prevention of tissue hypoxia by avoiding relevant hypoxemia must be still the major goal during OLV. However, if permissive hypoxemia as a protection against perioperative oxygen stress could be tolerable in highly selected patients is the objective of current research.


Human limit of hypoxia Acclimatization Thoracic surgery Thoracic anesthesia Permissive hypoxemia Intraoperative hypoxia 


Compliance with Ethical Standards

Conflict of Interest

Ulrich Limper and Burkhard Hartmann declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ahn S, Moon Y, AlGhamdi ZM, Sung SW. Nonintubated uniportal video-assisted thoracoscopic surgery: a single-center experience. Kor J Thor Cardiovasc Surg. 2018;51(5):344–9.CrossRefGoogle Scholar
  2. 2.
    Elkhayat H, Gonzalez-Rivas D. Non-intubated uniportal video-assisted thoracoscopic surgery. J Thor Dis. 2019;11(Suppl 3):S220–s2.CrossRefGoogle Scholar
  3. 3.
    Torda TA, McCulloch CH, O’Brien HD, Wright JS, Horton DA. Pulmonary venous admixture during one-lung anaesthesia. The effect of inhaled oxygen tension and respiration rate. Anaesthesia. 1974;29(3):272–9.PubMedCrossRefGoogle Scholar
  4. 4.••
    Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11 This study is the most cited one when the incidence of hypoxemia during one-lung ventilation is given. PubMedCrossRefGoogle Scholar
  5. 5.•
    Campos JH, Feider A. Hypoxia during one-lung ventilation-a review and update. J Cardiothorac Vasc Anesth. 2018;32(5):2330–8 This is the most recent review on hypoxia during one-lung ventilation. PubMedCrossRefGoogle Scholar
  6. 6.
    Tripathi RS, Papadimos TJ. Life-threatening hypoxemia in one-lung ventilation. Anesthesiology. 2011;115(2):438 author reply 9-41.PubMedCrossRefGoogle Scholar
  7. 7.
    Morkane CM, McKenna H, Cumpstey AF, Oldman AH, Grocott MPW, Martin DS. Intraoperative oxygenation in adult patients undergoing surgery (iOPS): a retrospective observational study across 29 UK hospitals. Perioperative medicine (London, England). 2018;7:17.CrossRefGoogle Scholar
  8. 8.
    Benatar SR, Hewlett AM, Nunn JF. The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth. 1973;45(7):711–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Russell WJ. Intermittent positive airway pressure to manage hypoxia during one-lung anaesthesia. Anaesth Intensive Care. 2009;37(3):432–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Russell WJ. Hypoxemia during one-lung ventilation: looking the other way. Anesthesiology. 2011;115(2):437 author reply 9-41.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Russell WJ. Hypoxaemia associated with one-lung anaesthesia: an alternative approach. Br J Anaesth. 2011;107(5):818 author’s reply.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kremer R, Aboud W, Haberfeld O, Armali M, Barak M. Differential lung ventilation for increased oxygenation during one lung ventilation for video assisted lung surgery. J Cardiothorac Surg. 2019;14(1):89.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.••
    Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol. 2018;315(1):R1-r27 A very comprehensive review of the actions of hyperoxia. PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Heerdt PM, Lane PB, Crabtree MJ, Park BJ. Systemic oxidative stress associated with lung resection during single lung ventilation. Eur J Cardio-Thor Surg. 2006;30(3):568–9.CrossRefGoogle Scholar
  15. 15.
    Misthos P, Katsaragakis S, Theodorou D, Milingos N, Skottis I. The degree of oxidative stress is associated with major adverse effects after lung resection: a prospective study. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2006;29(4):591–5.CrossRefGoogle Scholar
  16. 16.
    Roberts SM, Cios TJ. Con: Hyperoxia should not be used routinely in the management of cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2019;33(7):2075–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.•
    Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45 This study is one out of only a few which gives a balanced description of both bad and beneficial aspects of oxygen stress. PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Meyhoff CS, Jorgensen LN, Wetterslev J, Christensen KB, Rasmussen LS. Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial. Anesth Analg. 2012;115(4):849–54.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gatke MR, Walsh JL, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth. 2017;119(1):140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Heerdt PM, Stowe DF. Single-lung ventilation and oxidative stress: a different perspective on a common practice. Curr Opin Anaesthesiol. 2017;30(1):42–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schroder K, et al. Lung ischaemia-reperfusion injury: the role of reactive oxygen species. Adv Exp Med Biol. 2017;967:195–225.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brettner F, von Dossow V, Chappell D. The endothelial glycocalyx and perioperative lung injury. Curr Opin Anaesthesiol. 2017;30(1):36–41.PubMedPubMedCentralGoogle Scholar
  24. 24.•
    Suzuki S, Mihara Y, Hikasa Y, Okahara S, Ishihara T, Shintani A, et al. Current ventilator and oxygen management during general anesthesia: a multicenter, cross-sectional observational study. Anesthesiology. 2018;129(1):67–76 This reference gives the current practice of oxygen therapy in single lung ventilation procedures. PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kimura W, Nakada Y, Sadek HA. Hypoxia-induced myocardial regeneration. J Appl Physiol (1985). 2017;123(6):1676–81.CrossRefGoogle Scholar
  26. 26.
    Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. 2018;21(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lin A, Maity A. Molecular pathways: a novel approach to targeting hypoxia and improving radiotherapy efficacy via reduction in oxygen demand. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(9):1995–2000.CrossRefGoogle Scholar
  28. 28.
    Vermeulen TD, Boulet LM, Stembridge M, Williams AM, Anholm JD, Subedi P, et al. Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans. Am J Physiol Heart Circ Physiol. 2018;315(1):H132–h40.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, et al. Mitochondrial function in sepsis. Shock. 2016;45(3):271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Doe A, Kumagai M, Tamura Y, Sakai A, Suzuki K. A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy. J Anesth. 2016;30(6):949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Garutti I, Quintana B, Olmedilla L, Cruz A, Barranco M. Garcia de Lucas E. Arterial oxygenation during one-lung ventilation: combined versus general anesthesia. Anesth Analg. 1999;88(3):494–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Iwata M, Inoue S, Kawaguchi M, Takahama M, Tojo T, Taniguchi S, et al. Jugular bulb venous oxygen saturation during one-lung ventilation under sevoflurane- or propofol-based anesthesia for lung surgery. J Cardiothorac Vasc Anesth. 2008;22(1):71–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Von Dossow V, Welte M, Zaune U, Martin E, Walter M, Ruckert J, et al. Thoracic epidural anesthesia combined with general anesthesia: the preferred anesthetic technique for thoracic surgery. Anesth Analg. 2001;92(4):848–54.CrossRefGoogle Scholar
  34. 34.
    Barcroft J. Physiological effects of insufficient oxygen supply*. Nature. 1920;106(2656):125–9.CrossRefGoogle Scholar
  35. 35.
    Limper U. Die akute Kohlenmonoxidintoxikation - ein aktueller Überblick über die Pathophysiologie und die intensivmedizinische Therapie. Jahrbuch Intensivmedizin 2018. Jahrbuch Intensivmedizin. Lengerich: Pabst Science Publishers; 2018. p. 159–94.Google Scholar
  36. 36.
    Lumb AB, Nunn JF. Nunn’s applied respiratory physiology. 6th ed. Edinburgh ; Philadelphia: Elsevier Butterworth Heinemann; 2005. xiii, 501 p. pGoogle Scholar
  37. 37.
    Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit Care. 2007;11(1):203.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–53.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lewis P, O’Halloran KD. Diaphragm muscle adaptation to sustained hypoxia: lessons from animal models with relevance to high altitude and chronic respiratory diseases. Front Physiol. 2016;7:623.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Davies SW, Wedzicha JA. Hypoxia and the heart. Br Heart J. 1993;69(1):3–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hackel DB, Goodale WT, Kleinerman J. Effects of hypoxia on the myocardial metabolism of intact dogs. Circ Res. 1954;2(2):169–74.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mechelinck M, Hein M, Bellen S, Rossaint R, Roehl AB. Adaptation to acute pulmonary hypertension in pigs. Physiological reports. 2018;6(5).PubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ainslie PN, Shaw AD, Smith KJ, Willie CK, Ikeda K, Graham J, et al. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clinical science (London, England : 1979). 2014;126(9):661–70.CrossRefGoogle Scholar
  44. 44.
    West JB. Human responses to extreme altitudes. Integr Comp Biol. 2006;46(1):25–34.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hall J. Guyton and Hall textbook of medical physiology 13th Edition, Chapter 62 Cerebral blood flow, cerebrospinal fluid, and brain metabolism. USA: Elsevier; 2015.Google Scholar
  46. 46.
    Liu X, Xu D, Hall JR, Ross S, Chen S, Liu H, et al. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. J Appl Physiol (1985). 2017;123(6):1689–97.CrossRefGoogle Scholar
  47. 47.
    Koch A, Kahler W, Klapa S, Kuhtz-Buschbeck JP. Maintaining cerebral oxygen homeostasis: a serious business. Clin Auton Res. 2018;28(4):395–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hoiland RL, Howe CA, Coombs GB, Ainslie PN. Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res. 2018;28(4):423–35.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. 2016;310(5):R398–413.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Naeije R. Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis. 2010;52(6):456–66.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Cymerman A, Reeves JT, Sutton JR, Rock PB, Groves BM, Malconian MK, et al. Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol (1985). 1989;66(5):2446–53.CrossRefGoogle Scholar
  52. 52.
    Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, et al. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol (1985). 1987;63(2):531–9.CrossRefGoogle Scholar
  53. 53.
    West JB, Hackett PH, Maret KH, Milledge JS, Peters RM Jr, Pizzo CJ, et al. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(3):678–87.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE, et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360(2):140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.•
    Bickler PE, Feiner JR, Lipnick MS, Batchelder P, MacLeod DB, Severinghaus JW. Effects of acute, profound hypoxia on healthy humans: implications for safety of tests evaluating pulse oximetry or tissue oximetry performance. Anesthesia and analgesia. 2017;124(1):146–53 This recent study shows that healthy, conscious individuals withstand short phases of severe hypoxemia without harm. PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.•
    Bailey DM, Willie CK, Hoiland RL, Bain AR, MacLeod DB, Santoro MA, et al. Surviving without oxygen: how low can the human brain go? High altitude medicine & biology. 2017;18(1):73–9 This review summarizes the current knowledge on the tolerable hypoxia limits of the human brain. CrossRefGoogle Scholar
  57. 57.
    O’Driscoll BR, Howard LS, Earis J, Mak V. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72(Suppl 1):ii1-ii90.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Zander R, Mertzlufft F. Therapeutische Grenzwerte der akuten, arteriellen Hypoxie. AINS-Anästhesiologie· Intensivmedizin· Notfallmedizin· Schmerztherapie. 1996;31(06):372–4.CrossRefGoogle Scholar
  59. 59.
    Zander R, Mertzlufft F. The oxygen status of arterial blood: S Karger Pub; 1991.Google Scholar
  60. 60.
    (ELSO) ELSO. Guidelines of the Extracorporeal Life Support Organization (ELSO) for adult respiratory failure 2017 [Available from:]
  61. 61.
    Sevuk U, Altindag R, Baysal E, Yaylak B, Adiyaman MS, Akkaya S, et al. The effects of hyperoxaemia on tissue oxygenation in patients with a nadir haematocrit lower than 20% during cardiopulmonary bypass. Perfusion. 2016;31(3):232–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hemmerling TM, Bluteau MC, Kazan R, Bracco D. Significant decrease of cerebral oxygen saturation during single-lung ventilation measured using absolute oximetry. Br J Anaesth. 2008;101(6):870–5.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kato S, Yoshitani K, Kubota Y, Inatomi Y, Ohnishi Y. Effect of posture and extracranial contamination on results of cerebral oximetry by near-infrared spectroscopy. J Anesth. 2017;31(1):103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.•
    Tanaka N, Katoh RI, Yamamoto M, Hoshino K, Morimoto Y, Ito YM, et al. Changes in cerebral oxygen saturation during one-lung ventilation determined using spatially resolved spectroscopy and contributing factors. Journal of clinical anesthesia. 2019;59:99–100 The technical limitations and pitfalls of the cerebral infrared spectroscopy method applied during one-lung ventilation procedures are discussed. PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shaefi S, Marcantonio ER, Mueller A, Banner-Goodspeed V, Robson SC, Spear K, et al. Intraoperative oxygen concentration and neurocognition after cardiac surgery: study protocol for a randomized controlled trial. Trials. 2017;18(1):600.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.•
    Holzgraefe B, Andersson C, Kalzen H, von Bahr V, Mosskin M, Larsson EM, et al. Does permissive hypoxaemia during extracorporeal membrane oxygenation cause long-term neurological impairment?: A study in patients with H1N1-induced severe respiratory failure. Eur J Anaesthesiol. 2017;34(2):98–103 This reference is one of only a few that report good neurological outcome in patients who had suffered sustained severe hypoxemia. PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Shyamsundar M, O’Kane C, Perkins GD, Kennedy G, Campbell C, Agus A, et al. Prevention of post-operative complications by using a HMG-CoA reductase inhibitor in patients undergoing one-lung ventilation for non-cardiac surgery: study protocol for a randomised controlled trial. Trials. 2018;19(1):690.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Richard CC. Myocardial ischemia is not always due to epicardial atheromatous disease. Clin Cardiol. 2011;34(1):8–9.CrossRefGoogle Scholar
  69. 69.••
    Mierdl S, Meininger D, Dogan S, Wimmer-Greinecker G, Westphal K, Bremerich DH, et al. Does poor oxygenation during one-lung ventilation impair aerobic myocardial metabolism in patients with symptomatic coronary artery disease? Interactive Cardiovasc Thor Surg. 2007;6(2):209–13 This reference gives actual intraoperative data on myocardial oxygen metabolism with respect to hypoxia. CrossRefGoogle Scholar
  70. 70.
    Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, et al. Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg. 2000;120(4):660–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu TJ, Shih MS, Lee WL, Wang KY, Liu CN, Hung CJ, et al. Hypoxemia during one-lung ventilation for robot-assisted coronary artery bypass graft surgery. Ann Thorac Surg. 2013;96(1):127–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Lopez MG, Pretorius M, Shotwell MS, Deegan R, Eagle SS, Bennett JM, et al. The Risk of Oxygen during Cardiac Surgery (ROCS) trial: study protocol for a randomized clinical trial. Trials. 2017;18(1):295.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Martin DS, Brew-Graves C, McCartan N, Jell G, Potyka I, Stevens J, et al. Protocol for a feasibility randomised controlled trial of targeted oxygen therapy in mechanically ventilated critically ill patients. BMJ Open. 2019;9(1):e021674.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center (CMMC)Witten/Herdecke UniversityWittenGermany
  2. 2.German Aerospace Center (DLR)Institute of Aerospace MedicineCologneGermany

Personalised recommendations