Advertisement

Metabolic Disorders and Anesthesia

  • Cindy YeohEmail author
  • Howard Teng
  • Jacob Jackson
  • Lee Hingula
  • Takeshi Irie
  • Aron Legler
  • Corrine Levine
  • Iris Chu
  • Casey Chai
  • Luis Tollinche
Pediatric Anesthesia (J Lerman, Section Editor)
Part of the following topical collections:
  1. Pediatric Anesthesia

Abstract

Purpose of Review

Metabolic disorders encompass a group of inherited inborn errors of metabolism that are uncommonly encountered but can pose challenges when encountered during the perioperative period. Hence, it is paramount that anesthesiologists are experienced and familiar with management of these conditions.

Recent Findings

Hundreds of inborn errors of metabolism have already been identified, yet new metabolic disorders continue to be discovered with advancements in genomic science.

Summary

In our general review, we define the more common metabolic disorders encountered in perioperative medicine and discuss the perioperative anesthetic considerations and challenges associated with each disorder. The following disorders are covered in our review: disorders of carbohydrate metabolism, disorders of amino acid metabolism, disorders of branched-chain amino acid metabolism, organic acidemias, mitochondrial disorders, lysosomal storage disorders, metal metabolism disorders, and urea cycle disorders.

Keywords

Metabolic disorders Carbohydrate metabolism Amino acid metabolism Branched-chain amino acid metabolism Organic acidemias Mitochondrial disorders Lysosomal storage disorders Metal metabolism disorders Urea cycle disorders Anesthesia 

Notes

Compliance with Ethical Standards

Conflict of Interest

Cindy B. Yeoh, Howard C. Teng, Jacob C. Jackson, Lee P. Hingula, Takeshi Irie, Aron Legler, Corrine E. Levine, Iris Chu, Casey M. Chai, and Luis E. Tollinche declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Kliegman R, Stanton B, Schor N, St. Geme J III, Behrman R. Nelson Textbook of Pediatrics. 19th ed: Elsevier Health Sciences; 2011. Published in 2011 this is a textbook review of common metabolic disorders Google Scholar
  2. 2.
    Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis. 2017;40:325–42.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Karadag N, Zenciroglu A, Eminoglu FT, Dilli D, Karagol BS, Kundak A, et al. Literature review and outcome of classic galactosemia diagnosed in the neonatal period. Clin Lab. 2013;59:1139–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Dhillon A, Steadman RH. In: Fleisher LA, editor. Liver diseases, anesthesia and uncommon diseases. 6th ed. Philadelphia: Elsevier Saunders; 2012. p. 162–214.CrossRefGoogle Scholar
  5. 5.
    Choudhury A, Das S, Kiran U. Anaesthetic management of a newborn with galactosaemia for congenital heart surgery. Indian Journal of Anaesthesia. 2009;53:219–22.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Stuart G, Ahmad N. Perioperative care of children with inherited metabolic disorders. Continuing Education in Anaesthesia Critical Care & Pain. 2011;11:62–8.CrossRefGoogle Scholar
  7. 7.
    Hammond S, Krol A, Hampson-Evans D. Normoglycaemia in type 1b glycogen storage disease with difficult venous access. Anaesthesia. 2009;64:1150.PubMedCrossRefGoogle Scholar
  8. 8.
    Shenkman Z, Golub Y, Meretyk S, Shir Y, Landau D, Landau EH. Anaesthetic management of a patient with glycogen storage disease type 1b. Can J Anaesth. 1996;43:467–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Bevan JC. Anaesthesia in Von Gierke’s disease. Current approach to management. Anaesthesia. 1980;35:699–702.PubMedCrossRefGoogle Scholar
  10. 10.
    Yu X, Huang Y, Du J. Bispectral index may not reflect the depth of anaesthesia in a patient with glycogen storage disease type I. Br J Anaesth. 2009;103:616.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang LY, Ross AK, Li JS, Dearmey SM, Mackey JF, Worden M, et al. Cardiac arrhythmias following anesthesia induction in infantile-onset Pompe disease: a case series. Paediatr Anaesth. 2007;17:738–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Ing RJ, Cook DR, Bengur RA, Williams EA, Eck J, Dear Gde L, et al. Anaesthetic management of infants with glycogen storage disease type II: a physiological approach. Paediatr Anaesth. 2004;14:514–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim WS, Cho AR, Hong JM, Kim ES, Park SC, Yoon JY, et al. Combined general and epidural anesthesia for major abdominal surgery in a patient with Pompe disease. J Anesth. 2010;24:768–73.PubMedCrossRefGoogle Scholar
  14. 14.
    McFarlane HJ, Soni N. Pompe’s disease and anaesthesia. Anaesthesia. 1986;41:1219–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Moses SW, Gadoth N, Bashan N, Ben-David E, Slonim A, Wanderman KL. Neuromuscular involvement in glycogen storage disease type III. Acta Paediatr Scand. 1986;75:289–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Momoi T, Sano H, Yamanaka C, Sasaki H, Mikawa H. Glycogen storage disease type III with muscle involvement: reappraisal of phenotypic variability and prognosis. Am J Med Genet. 1992;42:696–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Olson LJ, Reeder GS, Noller KL, Edwards WD, Howell RR, Michels VV. Cardiac involvement in glycogen storage disease III: morphologic and biochemical characterization with endomyocardial biopsy. Am J Cardiol. 1984;53:980–1.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller CG, Alleyne GA, Brooks SE. Gross cardiac involvement in glycogen storage disease type 3. Br Heart J. 1972;34:862–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tada H, Kurita T, Ohe T, Shimomura K, Ishihara T, Yamada Y, et al. Glycogen storage disease type III associated with ventricular tachycardia. Am Heart J. 1995;130:911–2.PubMedCrossRefGoogle Scholar
  20. 20.
    LaBarbera M, Milechman G, Dulbecco F. Premature coronary artery disease in a patient with glycogen storage disease III. J Invasive Cardiol. 2010;22:E156–8.PubMedGoogle Scholar
  21. 21.
    Mohart D, Russo P, Tobias JD. Perioperative management of a child with glycogen storage disease type III undergoing cardiopulmonary bypass and repair of an atrial septal defect. Paediatr Anaesth. 2002;12:649–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Bolton SD, Clark VA, Norman JE. Multidisciplinary management of an obstetric patient with glycogen storage disease type 3. Int J Obstet Anesth. 2012;21:86–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Bollig G. McArdle’s disease (glycogen storage disease type V) and anesthesia--a case report and review of the literature. Paediatr Anaesth. 2013;23:817–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Baum V, O’Flaherty J. Anesthesia for genetic, metabolic, and dysmorphic syndromes of childhood, 2nd ed edition. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
  25. 25.
    Coleman P. McArdle’s disease. Problems of anaesthetic management for Caesarean section. Anaesthesia. 1984;39:784–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Bollig G, Mohr S, Raeder J. McArdle’s disease and anaesthesia: case reports. Review of potential problems and association with malignant hyperthermia. Acta Anaesthesiol Scand. 2005;49:1077–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Luzardo GE, Karlnoski RA, Williams B, Mangar D, Camporesi EM. Anesthetic management of a parturient with hyperhomocysteinemia. Anesth Analg. 2008;106:1833–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Slote MU, Khan KK, Khan AA, Butt MN. Is homocystinuria a real challenge for anesthetist? Are we making a difference? Saudi J Anaesth. 2018;12:172–3.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chambers JC, McGregor A, Jean-Marie J, Kooner JS. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet. 1998;351:36–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Obaidi MK, Stubbs PJ, Collinson P, Conroy R, Graham I, Noble MI. Elevated homocysteine levels are associated with increased ischemic myocardial injury in acute coronary syndromes. J Am Coll Cardiol. 2000;36:1217–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279–98.PubMedCrossRefGoogle Scholar
  32. 32.
    Rimm EB, Willett WC, Hu FB, Sampson L, Colditz GA, Manson JE, et al. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA. 1998;279:359–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Vermeulen EG, Stehouwer CD, Twisk JW, van den Berg M, de Jong SC, Mackaay AJ, et al. Effect of homocysteine-lowering treatment with folic acid plus vitamin B6 on progression of subclinical atherosclerosis: a randomised, placebo-controlled trial. Lancet. 2000;355:517–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Dierkes J, Westphal S, Luley C. The effect of fibrates and other lipid-lowering drugs on plasma homocysteine levels. Expert Opin Drug Saf. 2004;3:101–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Q, Li S, Li L, Li Q, Ren K, Sun X, et al. Metformin treatment and homocysteine: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016;8.Google Scholar
  36. 36.
    Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med. 1989;114:473–501.PubMedGoogle Scholar
  37. 37.
    Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA. 2006;296:2720–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Miller ER 3rd, Juraschek S, Pastor-Barriuso R, Bazzano LA, Appel LJ, Guallar E. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am J Cardiol. 2010;106:517–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Ray JG, Kearon C, Yi Q, Sheridan P, Lonn E. Heart Outcomes Prevention Evaluation I: homocysteine-lowering therapy and risk for venous thromboembolism: a randomized trial. Ann Intern Med. 2007;146:761–7.PubMedCrossRefGoogle Scholar
  40. 40.
    den Heijer M, Willems HP, Blom HJ, Gerrits WB, Cattaneo M, Eichinger S, et al. Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: a randomized, placebo-controlled, double-blind trial. Blood. 2007;109:139–44.CrossRefGoogle Scholar
  41. 41.
    Behman REKR, Jenson HB. Nelson textbook of paediatrics. 16th ed; 2000.Google Scholar
  42. 42.
    Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21:2080–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Teng YH, Sung CS, Liao WW, Kao SC, Huang YY, Tsou MY, et al. General anesthesia for patient with homocystinuria--a case report. Acta Anaesthesiol Sin. 2002;40:153–6.PubMedGoogle Scholar
  44. 44.
    Badner NH, Beattie WS, Freeman D, Spence JD. Nitrous oxide-induced increased homocysteine concentrations are associated with increased postoperative myocardial ischemia in patients undergoing carotid endarterectomy. Anesth Analg. 2000;91:1073–9.PubMedGoogle Scholar
  45. 45.
    Stoelting RKDS. Anaesthesia and coexisting diseases. 4th ed. Philadelphia: Churchill Livingstone; 2002.Google Scholar
  46. 46.
    National Institutes of Health Consensus Development P. National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16-18, 2000. Pediatrics. 2001;108:972–82.CrossRefGoogle Scholar
  47. 47.
    Douglas TD, Jinnah HA, Bernhard D, Singh RH. The effects of sapropterin on urinary monoamine metabolites in phenylketonuria. Mol Genet Metab. 2013;109:243–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103:1169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Lee P, Smith I, Piesowicz A, Brenton D. Spastic paraparesis after anaesthesia. Lancet. 1999;353:554.PubMedCrossRefGoogle Scholar
  50. 50.
    Dal D, Celiker V. Anaesthetic management of a strabismus patient with phenylketonuria. Paediatr Anaesth. 2003;13:740–1.PubMedCrossRefGoogle Scholar
  51. 51.
    Rayadurg V, Uttarwar A, Surve R. Is propofol safe in patients with phenylketonuria? J Neurosurg Anesthesiol. 2018;30:85–6.PubMedGoogle Scholar
  52. 52.
    Rivera-Cruz B. Mitochondrial diseases and anesthesia: a literature review of current opinions. AANA J. 2013;81:237–43.PubMedGoogle Scholar
  53. 53.
    Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res. 2002;27:353–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Delaney A, Gal Thomas J. Hazards of anesthesia and operation in maple-syrup-urine disease. Anesthesiology. 1976;44:83–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Kahraman S, Ercan M, Akkus O, Ercelen O, Erdem K, Coskun T. Anaesthetic management in maple syrup urine disease. Anaesthesia. 1996;51:575–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Griffiths S, Stuart, G., Alp Karahan, M., & Frazier, D.: Anaesthesia recommendations for patients suffering from Maple syrup urine disease. . 2015Google Scholar
  57. 57.
    Hamosh A, Kniffin, C., Krasikov, N., & McKusick, V. : Maple syrup urine disease; MSUD. . 2018Google Scholar
  58. 58.
    Fuentes-Garcia D, Falcon-Arana L. Perioperative management of a patient with maple syrup urine disease. BJA: Br J Anaesth. 2009;102:144–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Vaidyanathan K, Narayanan MP, Vasudevan DM. Organic acidurias: an updated review. Indian J Clin Biochem. 2011;26:319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    • Baumgartner MR, Horster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130. Guidelines developed using the SIGN methodology by having professionals on MMA/PA across twelve European countries and the USA gather all the existing evidence, score it according to the SIGN evidence level system, and make a series of conclusive statements supported by an associated level of evidence. PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Aldubayan SH, Rodan LH, Berry GT, Levy HL. Acute illness protocol for organic acidemias: methylmalonic acidemia and propionic acidemia. Pediatr Emerg Care. 2017;33:142–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Shaikh N, Hashmi MG, Shah C, Dhansura T. Anaesthetic considerations in a patient with methylmalonyl-coenzyme A mutase deficiency. Indian J Anaesth. 2017;61:1018–20.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sharar SR, Haberkern CM, Jack R, Scott CR. Anesthetic management of a child with methylmalonyl-coenzyme A mutase deficiency. Anesth Analg. 1991;73:499–501.PubMedCrossRefGoogle Scholar
  64. 64.
    Arcas-Bellas JJ, Arevalo-Ludena J, Onate ML, Aranzubia M, Alvarez-Rementeria R, Munoz-Alameda L. General anesthesia in an adult female with propionic acidemia: anesthetic considerations. Minerva Anestesiol. 2013;79:313–5.PubMedGoogle Scholar
  65. 65.
    Harker HE, Emhardt JD, Hainline BE. Propionic acidemia in a four-month-old male: a case study and anesthetic implications. Anesth Analg. 2000;91:309–11.PubMedGoogle Scholar
  66. 66.
    Karagoz AH, Uzumcugil F, Celebi N, Canbay O, Ozgen S. Anesthetic management of a 2-year-old male with propionic acidemia. Paediatr Anaesth. 2006;16:1290–1.PubMedCrossRefGoogle Scholar
  67. 67.
    Rajakumar A, Kaliamoorthy I, Reddy MS, Rela M. Anaesthetic considerations for liver transplantation in propionic acidemia. Indian J Anaesth. 2016;60:50–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ryu J, Shin YH, Ko JS, Gwak MS, Kim GS. Intractable metabolic acidosis in a child with propionic acidemia undergoing liver transplantation -a case report. Korean J Anesthesiol. 2013;65:257–61.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Baba C, Kasahara M, Kogure Y, Kasuya S, Ito S, Tamura T, et al. Perioperative management of living-donor liver transplantation for methylmalonic acidemia. Paediatr Anaesth. 2016;26:694–702.PubMedCrossRefGoogle Scholar
  70. 70.
    Ktena YP, Ramstad T, Baker EH, Sloan JL, Mannes AJ, Manoli I, et al. Propofol administration in patients with methylmalonic acidemia and intracellular cobalamin metabolism disorders: a review of theoretical concerns and clinical experiences in 28 patients. J Inherit Metab Dis. 2015;38:847–53.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ruzkova K, Weingarten TN, Larson KJ, Friedhoff RJ, Gavrilov DK, Sprung J. Anesthesia and organic aciduria: is the use of lactated Ringer’s solution absolutely contraindicated? Paediatr Anaesth. 2015;25:807–17.PubMedCrossRefGoogle Scholar
  72. 72.
    Weinberg GL, Laurito CE, Geldner P, Pygon BH, Burton BK. Malignant ventricular dysrhythmias in a patient with isovaleric acidemia receiving general and local anesthesia for suction lipectomy. J Clin Anesth. 1997;9:668–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Soberon JR, Elliott CE, Bland KS, Weinberg GL. Peripheral nerve block in a patient with propionic acidemia. Reg Anesth Pain Med. 2014;39:560–1.PubMedCrossRefGoogle Scholar
  74. 74.
    DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.PubMedCrossRefGoogle Scholar
  75. 75.
    •• Hsieh VC, Krane EJ, Morgan PG. Mitochondrial Disease and Anesthesia. J Inborn Errors Metab Screen. 2017;5:2326409817707770. Published in 2017, this is a good review of mitochondrial disease and anesthesia.CrossRefGoogle Scholar
  76. 76.
    Muravchick S, Levy RJ. Clinical implications of mitochondrial dysfunction. Anesthesiology. 2006;105:819–37.PubMedCrossRefGoogle Scholar
  77. 77.
    • Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth. 2013;23:785–93. Published in 2013, this review provides detailed anesthetic considerations for patients with mitochondrial disorders.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wolf A, Weir P, Segar P, Stone J, Shield J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357:606–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Weinberg GL, Palmer JW, VadeBoncouer TR, Zuechner MB, Edelman G, Hoppel CL. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology. 2000;92:523–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, et al. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11:414–30.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Richtsfeld M, Belani KG. Lysosomal storage diseases: past, present, and future. Anesth Analg. 2017;125:716–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4:27.PubMedCrossRefGoogle Scholar
  84. 84.
    Yuasa T, Takenaka T, Higuchi K, Uchiyama N, Horizoe Y, Cyaen H, et al. Fabry disease. J Echocardiogr. 2017;15:151–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Clark BM, Sprung J, Weingarten TN, Warner ME. Anesthesia for patients with mucopolysaccharidoses: comprehensive review of the literature with emphasis on airway management. Bosnian J Basic Med Sci. 18:1–7.Google Scholar
  86. 86.
    Scarpa M, Lourenco CM, Amartino H. Epilepsy in mucopolysaccharidosis disorders. Mol Genet Metab. 2017;122(s):55–61.CrossRefGoogle Scholar
  87. 87.
    Mueller P, Attenhofer Jost CH, Rohrbach M, Valsangiacomo Buechel ER, Seifert B, Balmer C, et al. Cardiac disease in children and young adults with various lysosomal storage diseases: comparison of echocardiographic and ECG changes among clinical groups. Int J Cardiol Heart Vessel. 2013;2:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Linhart A, Elliott PM. The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart. 2007;93:528–35.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Megens JH, de Wit M, van Hasselt PM, Boelens JJ, van der Werff DB, de Graaff JC. Perioperative complications in patients diagnosed with mucopolysaccharidosis and the impact of enzyme replacement therapy followed by hematopoietic stem cell transplantation at early age. Paediatr Anaesth. 2014;24:521–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Mattioli C, Gemma M, Baldoli C, Sessa M, Albertin A, Beretta L. Sedation for children with metachromatic leukodystrophy undergoing MRI. Paediatr Anaesth. 2007;17:64–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Santamaria F, Montella S, Mirra V, De Stefano S, Andria G, Parenti G. Respiratory manifestations in patients with inherited metabolic diseases. 2013;22:437–53.Google Scholar
  92. 92.
    Maria Fuller PJM, Hopwood JJ. Epidemiology of lysosomal storage diseases: an overview, Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006.Google Scholar
  93. 93.
    Gahl WA. Cystinosis, Pediatric Nephrology. Berlin: Springer; 2009.Google Scholar
  94. 94.
    Schneider JA, Schulman JD. Cystinosis and the Fanconi syndrome. In: Andreoli TDHJF, Fanestil DD, Schultz SG, editors. Physiology of Membrane Disorders. Boston: Springer; 1986.Google Scholar
  95. 95.
    Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol. 2017;13:115–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Ioscovich A, Elstein Y, Halpern S, Vatashsky E, Grisaru-Granovsky S, Elstein D. Anesthesia for obstetric patients with Gaucher disease: survey and review. Int J Obstet Anesth. 2004;13:244–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Hernandez-Palazon J. Anaesthetic management in children with metachromatic leukodystrophy. Paediatr Anaesth. 2003;13:733–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet. 2008;9:359–86.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Campo M, Berliner N. Hemophagocytic lymphohistiocytosis in adults. Hematol Oncol Clin North Am. 2015;29:915–25.PubMedCrossRefGoogle Scholar
  100. 100.
    • Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loreal O. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016. Published in 2018, this is a recent overview of hemochromatosis. PubMedCrossRefGoogle Scholar
  101. 101.
    Ganz T. Iron and infection. Int J Hematol. 2018;107:7–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Zamboni P, Tognazzo S, Izzo M, Pancaldi F, Scapoli GL, Liboni A, et al. Hemochromatosis C282Y gene mutation increases the risk of venous leg ulceration. J Vasc Surg. 2005;42:309–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Ozkurt S, Acikalin MF, Temiz G, Akay OM, Soydan M. Renal hemosiderosis and rapidly progressive glomerulonephritis associated with primary hemochromatosis. Ren Fail. 2014;36:814–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. American Association for the Study of Liver D: diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54:328–43.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Moini M, Mistry P, Schilsky ML. Liver transplantation for inherited metabolic disorders of the liver. Curr Opin Organ Transplant. 2010;15:269–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Raichlin E, Daly RC, Rosen CB, McGregor CG, Charlton MR, Frantz RP, et al. Combined heart and liver transplantation: a single-center experience. Transplantation. 2009;88:219–25.PubMedCrossRefGoogle Scholar
  107. 107.
    Barg A, Elsner A, Hefti D, Hintermann B. Total ankle arthroplasty in patients with hereditary hemochromatosis. Clin Orthop Relat Res. 2011;469:1427–35.PubMedCrossRefGoogle Scholar
  108. 108.
    Beaton MD, Adams PC. Prognostic factors and survival in patients with hereditary hemochromatosis and cirrhosis. Can J Gastroenterol. 2006;20:257–60.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kowdley KV, Brandhagen DJ, Gish RG, Bass NM, Weinstein J, Schilsky ML, et al. National Hemochromatosis Transplant R: survival after liver transplantation in patients with hepatic iron overload: the national hemochromatosis transplant registry. Gastroenterology. 2005;129:494–503.PubMedCrossRefGoogle Scholar
  110. 110.
    Gerhard GS, Chokshi R, Still CD, Benotti P, Wood GC, Freedman-Weiss M, et al. The influence of iron status and genetic polymorphisms in the HFE gene on the risk for postoperative complications after bariatric surgery: a prospective cohort study in 1,064 patients. Patient Saf Surg. 2011;5:1.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Shander A, Berth U, Betta J, Javidroozi M. Iron overload and toxicity: implications for anesthesiologists. J Clin Anesth. 2012;24:419–25.PubMedCrossRefGoogle Scholar
  112. 112.
    • Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14:103–13. A comprehensive overview of Wilson’s and other copper disorders from 2015. PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Clayton PT. Inherited disorders of transition metal metabolism: an update. J Inherit Metab Dis. 2017;40:519–29.PubMedCrossRefGoogle Scholar
  114. 114.
    Li K, Lindauer C, Haase R, Rudiger H, Reichmann H, Reuner U, et al. Autonomic dysfunction in Wilson’s disease: a comprehensive evaluation during a 3-year follow up. Front Physiol. 2017;8:778.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kuan P. Cardiac Wilson’s disease. Chest. 1987;91:579–83.PubMedCrossRefGoogle Scholar
  116. 116.
    Grandis DJ, Nah G, Whitman IR, Vittinghoff E, Dewland TA, Olgin JE, et al. Wilson’s Disease and Cardiac Myopathy. Am J Cardiol. 2017;120:2056–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Ferreira CR, Gahl WA. Disorders of metal metabolism. Transl Sci Rare Dis. 2017;2:101–39.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Langley A, Dameron CT. Copper and anesthesia: clinical relevance and management of copper related disorders. Anesthesiol Res Pract. 2013;2013:750901.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kobayashi M. The effects of sevoflurane and isoflurane on hepatic blood flow in man. Masui. 1996;45:281–6.PubMedGoogle Scholar
  120. 120.
    Baykal M, Karapolat S. Anesthetic management of a pediatric patient with wilsons disease. J Clin Med Res. 2010;2:99–101.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Foubert-Samier A, Kazadi A, Rouanet M, Vital A, Lagueny A, Tison F, et al. Axonal sensory motor neuropathy in copper-deficient Wilson’s disease. Muscle Nerve. 2009;40:294–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Blair NF, Cremer PD, Tchan MC. Urea cycle disorders: a life-threatening yet treatable cause of metabolic encephalopathy in adults. Pract Neurol. 2015;15:45–8.PubMedCrossRefGoogle Scholar
  123. 123.
    • Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32. Published in 2012, this comprehensive overview of urea cycle disorders incorporates new trends and emerging therapies. PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cindy Yeoh
    • 1
    Email author
  • Howard Teng
    • 1
  • Jacob Jackson
    • 1
  • Lee Hingula
    • 1
  • Takeshi Irie
    • 1
  • Aron Legler
    • 1
  • Corrine Levine
    • 2
  • Iris Chu
    • 2
  • Casey Chai
    • 2
  • Luis Tollinche
    • 1
  1. 1.Department of Anesthesiology and Critical Care MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of AnesthesiologyWeill Cornell Medical College and New York Presbyterian HospitalNew YorkUSA

Personalised recommendations