Advertisement

Current Anesthesiology Reports

, Volume 9, Issue 2, pp 165–173 | Cite as

Septic Shock and the Heart

  • Pietro BertiniEmail author
  • Fabio Guarracino
Critical Care Anesthesia (BS Rasmussen, Section Editor)
Part of the following topical collections:
  1. Critical Care Anesthesia

Abstract

Purpose of Review

The aim of this review is to analyze the cardiovascular pathophysiology of septic shock. Using visual representations of a left ventricular cycle in the pressure/volume plane, we describe hemodynamic derangement occurring in septic shock and subsequent changes at each step of treatment allowing a rapid understanding of complex alterations.

Recent Findings

Acute circulatory failure during sepsis has to be counterbalanced rapidly and appropriately. The most recent guidelines rely on volume expansion, vasoactive, and inotropic support but underlining patients’ pathophysiology is often undetermined.

Summary

Diagnosis of the hemodynamic substrate needs to be carried out thoroughly, using echocardiography, now commonplace for the intensivist. A pathophysiological approach as we describe might help to understand complicated patterns allowing updates during resuscitation steps.

Finally, in our beliefs, clinicians should address septic shock resuscitation using a tailored approach and specific protocols, but their applicability needs to be investigated.

Keywords

Pressure-volume loops Ventriculo-arterial coupling Sepsis Septic shock Hemodynamics Pathophysiology Critical care 

Abbreviations

MAP

Mean arterial pressure

VE

Volume expansion

TPR

Total peripheral resistance

CVP

Central venous pressure

PAOP

Pulmonary artery occlusion pressure

CO

Cardiac output

Pms

Mean systemic filling pressure

Pmsa

Mean systemic filling pressure analogue

FHM

Functional hemodynamic monitoring

PPV

Pulse pressure variation

SVV

Stroke volume variation

Edyn

Dynamic elastance

Ea

Effective arterial elastance

ScVO2

Central venous oxygen saturation

PVL

Pressure-volume loop

Ees

Left ventricular elastance

ESPVR

End-systolic pressure-volume relationship

EDPVR

End-dyastolic pressure-volume relationship

SBP

Systolic blood pressure

ESP

End-systolic pressure

EDP

End-dyastolic pressure

EDV

End-dyastolic volume

SV

Stroke volume

VAC

Ventriculo-arterial coupling

HR

Heart rate

MVO2

Myocardial oxygen consumption

PVA

Pressure-volume area

SW

Stroke work

PE

Potential energy

RV

Right ventricular

IABP

Intra-aortic ballon pump

ECMO

Extracorporeal membrane oxygenation

VA

Veno-arterial (ECMO)

VV

Veno-venous (ECMO)

LVAD

Left ventricular assist device

MRI

Magnetic resonance imaging

Notes

Compliance With Ethical Standards

Conflict of Interest

Pietro Bertini and Fabio Guarracino declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10 Surviving sepsis campaign guidelines the worldwide accepted guidelines to treat sepsis and septic shock. CrossRefGoogle Scholar
  2. 2.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRefGoogle Scholar
  3. 3.
    Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.CrossRefGoogle Scholar
  4. 4.
    Cariou A, Pinsky MR, Monchi M, Laurent I, Vinsonneau C, Chiche JD, et al. Is myocardial adrenergic responsiveness depressed in human septic shock? Intensive Care Med. 2008;34(5):917–22.CrossRefGoogle Scholar
  5. 5.
    Guerin L, Monnet X, Teboul JL. Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Pract Res Clin Anaesthesiol. 2013;27(2):177–85.CrossRefGoogle Scholar
  6. 6.
    Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19:55.CrossRefGoogle Scholar
  7. 7.
    Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med. 2012;38(9):1452–60.CrossRefGoogle Scholar
  8. 8.
    Furst B. The heart: pressure-propulsion pump or organ of impedance? J Cardiothorac Vasc Anesth. 2015;29(6):1688–701.CrossRefGoogle Scholar
  9. 9.
    Vos JJ, Kalmar AF, Hendriks HG, Bakker J, Scheeren TW. The effect of fluid resuscitation on the effective circulating volume in patients undergoing liver surgery: a post-hoc analysis of a randomized controlled trial. J Clin Monit Comput. 2017.Google Scholar
  10. 10.
    Suess EM, Pinsky MR. Hemodynamic monitoring for the evaluation and treatment of shock: what is the current state of the art? Semin Respir Crit Care Med. 2015;36(6):890–8.CrossRefGoogle Scholar
  11. 11.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.CrossRefGoogle Scholar
  12. 12.
    Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8.CrossRefGoogle Scholar
  13. 13.
    Guarracino F, Ferro B, Forfori F, Bertini P, Magliacano L, Pinsky MR. Jugular vein distensibility predicts fluid responsiveness in septic patients. Crit Care. 2014;18(6):647.CrossRefGoogle Scholar
  14. 14.
    • Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513–21 The first study that addressed ventriculo-arterial uncoupling in human septic shock. CrossRefGoogle Scholar
  15. 15.
    Monge Garcia MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15(1):R15.CrossRefGoogle Scholar
  16. 16.
    Monge Garcia MI, Saludes Orduna P, Cecconi M. Understanding arterial load. Intensive Care Med. 2016;42(10):1625–7.CrossRefGoogle Scholar
  17. 17.
    Morelli A, Passariello M. Hemodynamic coherence in sepsis. Best Pract Res Clin Anaesthesiol. 2016;30(4):453–63.CrossRefGoogle Scholar
  18. 18.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.CrossRefGoogle Scholar
  19. 19.
    Angus DC, Bailey M, Barnato AE, Bellomo R, CanterRR, Coats TJ, et al. PRISM Investigators. Early, goal-directed therapy for septic shock - a patient-level meta-analysis. N Engl J Med 2017;376(23):2223–2234.  https://doi.org/10.1056/NEJMoa1701380
  20. 20.
    Marchionni N, Fumagalli S, Baldereschi G, Di Bari M, Fantini F. Effective arterial elastance and the hemodynamic effects of intraaortic balloon counterpulsation in patients with coronary heart disease. Am Heart J. 1998;135(5 Pt 1):855–61.CrossRefGoogle Scholar
  21. 21.
    Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95.CrossRefGoogle Scholar
  22. 22.
    Dahlgren G, Veintemilla F, Settergren G, Liska J. Left ventricular end-systolic pressure estimated from measurements in a peripheral artery. J Cardiothorac Vasc Anesth. 1991;5(6):551–3.CrossRefGoogle Scholar
  23. 23.
    Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, et al. Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med. 2013;39(6):1025–33.CrossRefGoogle Scholar
  24. 24.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112(15):2254–62.CrossRefGoogle Scholar
  25. 25.
    Monge Garcia MI, Jian Z, Settels JJ, Hatib F, Cecconi M, Pinsky MR. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure. J Clin Monit Comput. 2018.Google Scholar
  26. 26.
    Vizzardi E, Sciatti E, Bonadei I, D'Aloia A, Tartiere-Kesri L, Tartiere JM, et al. Effects of spironolactone on ventricular-arterial coupling in patients with chronic systolic heart failure and mild symptoms. Clin Res Cardiol. 2015;104(12):1078–87.CrossRefGoogle Scholar
  27. 27.
    Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M, Gil Cano A, Oscier C, Rhodes A, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41(7):1247–55.CrossRefGoogle Scholar
  28. 28.
    Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285(2):H614–20.CrossRefGoogle Scholar
  29. 29.
    Najjar SS, Schulman SP, Gerstenblith G, Fleg JL, Kass DA, O'Connor F, et al. Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol. 2004;44(3):611–7.CrossRefGoogle Scholar
  30. 30.
    Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, et al. Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol (Oxf). 2006;188(1):15–20.CrossRefGoogle Scholar
  31. 31.
    • Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR. Ventriculoarterial decoupling in human septic shock. Crit Care. 2014;18(2):R80 The first study that addressed ventriculo-arterial uncoupling in human septic shock. CrossRefGoogle Scholar
  32. 32.
    Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66(23):2663–74.CrossRefGoogle Scholar
  33. 33.
    Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015;3:48.CrossRefGoogle Scholar
  34. 34.
    Izumi Y. Drug-induced takotsubo cardiomyopathy. Heart Fail Clin. 2013;9(2):225–31 ix-x.CrossRefGoogle Scholar
  35. 35.
    Bhattacharjee S, Soni KD, Maitra S, Baidya DK. Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: a meta-analysis of randomized controlled trials. J Clin Anesth. 2017;39:67–72.CrossRefGoogle Scholar
  36. 36.
    Guarracino F, Cariello C, Danella A, Doroni L, Lapolla F, Stefani M, et al. Effect of levosimendan on ventriculo-arterial coupling in patients with ischemic cardiomyopathy. Acta Anaesthesiol Scand. 2007;51(9):1217–24.CrossRefGoogle Scholar
  37. 37.
    Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.CrossRefGoogle Scholar
  38. 38.
    Hajjej Z, Meddeb B, Sellami W, Labbene I, Morelli A, Ferjani M. Effects of Levosimendan on cellular metabolic alterations in patients with septic shock: a randomized controlled pilot study. Shock. 2017;48:307–12.CrossRefGoogle Scholar
  39. 39.
    • Belletti A, Benedetto U, Biondi-Zoccai G, Leggieri C, Silvani P, Angelini GD, et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017;37:91–8 The first study that addressed ventriculo-arterial uncoupling in human septic shock. CrossRefGoogle Scholar
  40. 40.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.CrossRefGoogle Scholar
  41. 41.
    Miranda ML, Balarini MM, Balthazar DS, Paes LS, Santos MS, Bouskela E. Ivabradine attenuates the microcirculatory derangements evoked by experimental sepsis. Anesthesiology. 2017;126(1):140–9.CrossRefGoogle Scholar
  42. 42.
    Solomon SB, Minneci PC, Deans KJ, Feng J, Eichacker PQ, Banks SM, et al. Effects of intra-aortic balloon counterpulsation in a model of septic shock. Crit Care Med. 2009;37(1):7–18.CrossRefGoogle Scholar
  43. 43.
    Abrams D, Brodie D. Extracorporeal membrane oxygenation for adult respiratory failure: 2017 update. Chest. 2017;152:639–49.CrossRefGoogle Scholar
  44. 44.
    Kilic A, Shukrallah BN, Kilic A, Whitson BA. Initiation and management of adult veno-arterial extracorporeal life support. Ann Transl Med. 2017;5(4):67.CrossRefGoogle Scholar
  45. 45.
    Park JI, Jung BH, Lee SG. Veno-arterial-venous hybrid mode of extracorporeal membrane oxygenation for acute respiratory distress syndrome combined with septic shock in a liver transplant patient: a case report. Transplant Proc. 2017;49(5):1192–5.CrossRefGoogle Scholar
  46. 46.
    Kapur NK, Alkhouli M, DeMartini T, Faraz H, George Z, Goodwin M, et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment elevation myocardial infarction: a pilot study using the Impella CP((R)). Circulation 2019;139(3):337–346.  https://doi.org/10.1161/CIRCULATIONAHA.118.038269.
  47. 47.
    Pinsky MR. The right ventricle: interaction with the pulmonary circulation. Crit Care. 2016;20:266.CrossRefGoogle Scholar
  48. 48.
    Chan CM, Klinger JR. The right ventricle in sepsis. Clin Chest Med. 2008;29(4):661–76 ix.CrossRefGoogle Scholar
  49. 49.
    Greyson CR. The right ventricle and pulmonary circulation: basic concepts. Rev Esp Cardiol. 2010;63(1):81–95.CrossRefGoogle Scholar
  50. 50.
    Clark JE, Marber MS. Advancements in pressure-volume catheter technology - stress remodelling after infarction. Exp Physiol. 2013;98(3):614–21.CrossRefGoogle Scholar
  51. 51.
    Guarracino F, Bertini P. Perioperative haemodynamic management: is echocardiography the right tool? Curr Opin Crit Care. 2014;20(4):431–7.CrossRefGoogle Scholar
  52. 52.
    •• Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38(7):2028–34 The first study that addressed ventriculo-arterial uncoupling in human septic shock. CrossRefGoogle Scholar
  53. 53.
    Guarracino F, Bertini P, Pinsky MR. Right Ventriculo-arterial coupling in the critically Ill. In: Vincent JL, editor. Annual update in intensive care and emergency medicine. Springer, Cham; 2017.  https://doi.org/10.1007/978-3-319-51908-1_17
  54. 54.
    Bellofiore A, Chesler NC. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Ann Biomed Eng. 2013;41(7):1384–98.CrossRefGoogle Scholar
  55. 55.
    Naeije R. Assessment of right ventricular function in pulmonary hypertension. Curr Hypertens Rep. 2015;17(5):35.CrossRefGoogle Scholar
  56. 56.
    Bertini P, Guarracino F, Colosimo D, Gonnella S, Brizzi G, Mancino G, et al. Right ventricular-vascular coupling: a single-beat noninvasive approach in the critically ill. Crit Care. 2017;21(Supp. 1):42.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiothoracic and Vascular Anaesthesia and Intensive Care, Department of Anaesthesia and Critical Care MedicineAzienda Ospedaliero Universitaria PisanaPisaItaly

Personalised recommendations