Current Pathobiology Reports

, Volume 7, Issue 1, pp 1–8 | Cite as

Standardization of Blood Collection and Processing for the Diagnostic Use of Extracellular Vesicles

  • Marta Venturella
  • Francesco M. Carpi
  • Davide ZoccoEmail author
Biospecimens Science and Evidence-Based Standards for Precision Medicine (F Betsou, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Biospecimens Science and Evidence-Based Standards for Precision Medicine


Purpose of Review

Extracellular vesicles (EVs) are lipid membrane vesicles released by many types of cells in both health and disease. EVs can be found in most body fluids, carrying a plethora of biomolecules, including proteins, RNA, and DNA, that reflect the biomolecular composition of the tissue of origin. Parenchymal and stromal cells actively release EVs in the extracellular milieu and in circulation, providing valuable information that may be exploited for diagnostic applications. However, isolation of these EV subpopulations in circulation is extremely challenging as they are diluted within more abundant EV subpopulations derived from blood cells (red blood cells, platelets, and white blood cells).

Recent Findings

A number of preanalytical variables during blood collection and processing greatly impact the levels of blood-derived EVs, thus affecting sample quality. So far, lack of standard protocols for blood collection and processing as well as quality control metrics has limited the clinical validation and adoption of EV-based diagnostic assays.


In this review, we describe the preanalytical variables that affect sample quality and suitability for EV-based diagnostic approaches. Furthermore, we suggest biochemical and molecular quality control (QC) metrics to minimize intra- and interstudy variability and improve data robustness and reproducibility.


Standardization Extracellular vesicles Blood Preanalytical variables Liquid biopsy RNA biomarkers 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.CrossRefGoogle Scholar
  2. 2.
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–43.CrossRefGoogle Scholar
  3. 3.
    •• Li Q, Wang X, Li X, He X, Wan Q, Yin J, et al. Obtaining high-quality blood specimens for downstream applications: a review of current knowledge and best practices. Biopreserv biobank. 2018. A review that summarizes the current best practices for blood specimen collection and handling. Google Scholar
  4. 4.
    •• Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;27:2 This review underlines the needs of standardization of biospecimen handling for downstream EV isolation and analysis. Google Scholar
  5. 5.
    Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs - an update. Nat Rev Clin Oncol. 2018;15(9):541–63.CrossRefGoogle Scholar
  6. 6.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.CrossRefGoogle Scholar
  7. 7.
    György B, Pálóczi K, Kovács A, Barabás E, Bekő G, Várnai K, et al. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014;133(2):285–92.CrossRefGoogle Scholar
  8. 8.
    Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;25:3.Google Scholar
  9. 9.
    •• Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10(3):881–906 Review that underlines the role of EVs in liquid biopsy and the variables to be considered for EVs studies during preanalytical and analytical phases. CrossRefGoogle Scholar
  10. 10.
    •• Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48 This review suggests guidelines for sample collection and processing in EV studies. CrossRefGoogle Scholar
  11. 11.
    EV-TRACK Consortium, Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–32.CrossRefGoogle Scholar
  12. 12.
    Mora EM, Álvarez-Cubela S, Oltra E. Biobanking of exosomes in the era of precision medicine: are we there yet? Int J Mol Sci. 2015;17(1).Google Scholar
  13. 13.
    • Vila-Liante V, Sánchez-López V, Martínez-Sales V, Ramón-Nuñez LA, Arellano-Orden E, Cano-Ruiz A, et al. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clin Chem Lab Med. 2016;54(11):1759–67 This publication shows the influence of different sample processing and storage conditions on the microparticle count in plasma. CrossRefGoogle Scholar
  14. 14.
    Štukelj R, Schara K, Bedina-Zavec A, Šuštar V, Pajnič M, Pađen L, et al. Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. Eur J Pharm Sci. 2017;98:17–29.CrossRefGoogle Scholar
  15. 15.
    Clayton A, Buschmann D, Byrd JB, Carter DRF, Cheng L, Compton C, et al. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018;7:1 1473707.CrossRefGoogle Scholar
  16. 16.
    Tuck MK, Chan DW, Chia D, Godwin AK, Grizzle WE, Krueger KE, et al. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res. 2009;8(1):113–7.CrossRefGoogle Scholar
  17. 17.
    Betsou F and ISBER Biospecimen Science Working Group. Assays for qualification and quality stratification of clinical biospecimens used in research. Biopreserv Biobanking. 2016;14:398–409.CrossRefGoogle Scholar
  18. 18.
    •• Simundic A, Bölenius K, Cadamuro J, et al. Recommendation for venous blood sampling. EFML paper (European Federation of Clinical Chemistry and laboratory medicine), v. 1.1 2018. Joint EFLM-COLABIOCLI recommendations for blood sampling and post sampling procedures.Google Scholar
  19. 19.
    • Magnette A, Chatelain M, Chatelain B, Ten Cate H, Mullier F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thromb J. 2016;14:49 A systematic review about the preanalytical variables affecting sample quality. CrossRefGoogle Scholar
  20. 20.
    •• World Health Organization. WHO guidelines on drawing blood: best practices in phlebotomy. 2010 ISBN 978 92 4 159922 1 (NLM classification: WB 381). Summary of the best practices for venous blood sampling. Google Scholar
  21. 21.
    Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011;105(3):396–408.CrossRefGoogle Scholar
  22. 22.
    Hernandes VV, Barbas C, Dudzik D. A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis. 2017;38(18):2232–41.CrossRefGoogle Scholar
  23. 23.
    Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):4879–92.CrossRefGoogle Scholar
  24. 24.
    El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222–30.CrossRefGoogle Scholar
  25. 25.
    Wong KH, Sandlin RD, Carey TR, Miller KL, Shank AT, et al. The role of physical stabilization in whole blood preservation. Sci Rep. 2016;6:21023.CrossRefGoogle Scholar
  26. 26.
    Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795.CrossRefGoogle Scholar
  27. 27.
    Greening DW, Glenister KM, Sparrow RL, Simpson RJ. International blood collection and storage: clinical use of blood products. J Proteome. 2010;73(3):386–95.CrossRefGoogle Scholar
  28. 28.
    Trezzi JP, Bulla A, Bellora C, Rose M, Lescuyer P, Kiehntopf M, et al. LacaScore: a novel plasma sample quality control tool based on ascorbic acid and lactic acid levels. Metabolomics. 2016;12:96.CrossRefGoogle Scholar
  29. 29.
    Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2017;20(1):1.CrossRefGoogle Scholar
  30. 30.
    Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of circulating blood-based microRNAs - pre-analytic methodological considerations. PLoS One. 2017;12(2):e0167969.CrossRefGoogle Scholar
  31. 31.
    Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6:36162.CrossRefGoogle Scholar
  32. 32.
    Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, et al. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. 2018;9:1479.CrossRefGoogle Scholar
  33. 33.
    Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red blood cells: a source of extracellular vesicles. Methods in molecular biology. Extracellular vesicles - methods and protocols 2017. ISBN 9781493972531.Google Scholar
  34. 34.
    Tao SC, Guo SC, Zhang CQ. Platelet-derived extracellular vesicles: an emerging therapeutic approach. Int J Biol Sci. 2017;13(7):828–34.CrossRefGoogle Scholar
  35. 35.
    Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–9.CrossRefGoogle Scholar
  36. 36.
    Danesh A, Inglis HC, Abdel-Mohsen M, Deng X, Adelman A, Schechtman KB, et al. Granulocyte-derived extracellular vesicles activate monocytes and are associated with mortality in intensive care unit patients. Front Immunol. 2018;9:956.CrossRefGoogle Scholar
  37. 37.
    Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, Gámez-Valero A, Seguí-Barber J, Izquierdo-Useros N, et al. Proteomics study of human cord blood reticulocyte-derived exosomes. Sci Rep. 2018;8(1):14046.CrossRefGoogle Scholar
  38. 38.
    Juzenas S, Venkatesh G, Hübenthal M, Hoeppner MP, Du ZG, Paulsen M, et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res. 2017;45(16):9290–301.CrossRefGoogle Scholar
  39. 39.
    Momose F, Seo N, Akahori Y, Sawada S, Harada N, Ogura T, et al. Guanine-rich sequences are a dominant feature of exosomal microRNAs across the mammalian species and cell types. PLoS One. 2016;11(4):e0154134.CrossRefGoogle Scholar
  40. 40.
    •• Teruel-Montoya R, Kong X, Abraham S, Ma L, Kunapuli SP, Holinstat M, et al. MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression. PLoS One. 2014;9(7):e102259 This publication shows the contribution of hematopoietic cells to the miRNA content found in blood from healthy donors. CrossRefGoogle Scholar
  41. 41.
    Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol. 2008;81(4):304–10.CrossRefGoogle Scholar
  42. 42.
    Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C. The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: a review. Front Endocrinol (Lausanne). 2018;9:74.CrossRefGoogle Scholar
  43. 43.
    Dempsey E, Dervin F, Maguire PB. Platelet derived exosomes are enriched for specific microRNAs which regulate WNT signalling in endothelial cells. Blood. 2014;124:2760.CrossRefGoogle Scholar
  44. 44.
    • Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila). 2012;5(3):492–7 This article shows evidence that blood cells are major contributors to miRNA levels in circulation, thus confounding RNA analyses for cancer biomarker discovery. CrossRefGoogle Scholar
  45. 45.
    Liu T, Zhang Q, Zhang J, Li C, Miao YR, Lei Q, et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Res. 2018 Oct;18.Google Scholar
  46. 46.
    Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T, et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 2010;32(6):828–39.CrossRefGoogle Scholar
  47. 47.
    Choi JL, Li S, Han JY. Platelet function tests: a review of progresses in clinical application. Biomed Res Int. 2014;2014:456569.Google Scholar
  48. 48.
    Torri A, Carpi D, Bulgheroni E, Crosti MC, Moro M, Gruarin P, et al. Extracellular microRNA signature of human helper T cell subsets in health and autoimmunity. J Biol Chem. 2017;292(7):2903–15.CrossRefGoogle Scholar
  49. 49.
    Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell. 2015;107(3):61–77.CrossRefGoogle Scholar
  50. 50.
    Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–95.CrossRefGoogle Scholar
  51. 51.
    Sastre B, Cañas JA, Rodrigo-Muñoz JM, Del Pozo V. Novel modulators of asthma and allergy: exosomes and microRNAs. Front Immunol. 2017;8:826.CrossRefGoogle Scholar
  52. 52.
    Zocco D, Zarovni N. Extraction and analysis of extracellular vesicle-associated miRNAs following antibody-based extracellular vesicle capture from plasma samples. Methods Mol Biol. 1660;2017:269–85.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marta Venturella
    • 1
  • Francesco M. Carpi
    • 1
  • Davide Zocco
    • 1
    Email author
  1. 1.Exosomics S.p.A.SienaItaly

Personalised recommendations